综述

神奇的手性螺环配体

  • 谢建华 ,
  • 周其林
展开
  • 南开大学元素有机化学研究所 天津化学化工协同创新中心 天津 300071

收稿日期: 2014-05-08

  网络出版日期: 2014-06-05

基金资助

项目受国家自然科学基金、国家重点基础研究发展计划(973计划)(No.2012CB821600)和教育部“111”引智计划(No.B06005)资助.

Magical Chiral Spiro Ligands

  • Xie Jianhua ,
  • Zhou Qilin
Expand
  • State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071

Received date: 2014-05-08

  Online published: 2014-06-05

Supported by

Project supported by the the National Natural Science Foundation of China, the National Basic Research Program of China (973 Program, No. 2012CB821600), and“111” Project of the Ministry of Education of China (Grant No. B06005).

摘要

过渡金属参与的不对称催化反应是有机合成化学研究的前沿和热点. 寻找和发现新颖配体骨架并开展新型高效的手性配体及催化剂的设计合成是不对称催化反应研究的核心内容. 从20世纪90年代,特别是进入21世纪以来,螺环骨架手性配体受到了广泛的关注,并逐渐发展成为特色鲜明的手性配体类别. 手性螺环配体的骨架已由多手性的螺[4.4]壬烷骨架发展到只具有单一手性的螺二氢茚和螺[4.4]壬二烯等螺环骨架类型,形成了包括手性螺环单磷配体、双膦配体、膦氮配体、双氮配体等丰富的手性配体库. 这些手性螺环配体及其催化剂不仅在不对称催化氢化、不对称碳―碳键形成、不对称碳―杂原子键形成等多种类型的不对称催化反应中均表现出优异的催化活性和对映选择性,且使得许多原先难以控制对映选择性的不对称催化反应变得可能. 而今,手性螺环结构已成为“优势结构”,相应的手性螺环配体及其催化剂已被国内外同行广泛采用. 手性螺环配体的兴起为手性催化剂研究增加了活力,极大地促进了不对称合成化学的发展. 今后,手性螺环配体的研究除了将向新型、高效、高选择性手性配体及催化剂方向发展外,将其应用于新的不对称催化反应的对映选择性控制、以及应用于手性天然产物和药物的高效不对称合成将成为新的研究热点.

本文引用格式

谢建华 , 周其林 . 神奇的手性螺环配体[J]. 化学学报, 2014 , 72(7) : 778 -797 . DOI: 10.6023/A14050364

Abstract

Transition metal catalyzed asymmetric reaction is a hot issue and a frontier of the research in current organic chemistry. The design and synthesis of new type of efficient chiral ligands and chiral catalysts, esspecially those with novel skeleton is the focus of research in asymmetric catalysis. Since 1990's, chiral ligands based on spiro skeletons have received increasing attention and gradually developed into a new type of chiral ligands with distinctive characteristics. The skeletons of the chiral spiro ligands developed from spiro[4.4]nonane with three chiral stereocenters to spirobiindane and spiro[4.4]nonadiene with only one axial chirality, as well as other types of spiro skeletons. Nowadays, the library of chiral spiro ligands contains a wide range of chiral spiro ligands with different skeletons, including chiral spiro monophosphorus ligands, diphosphine ligands, phosphine-nitrogen ligands, dinitrogen ligands, and etc. Many of these chiral spiro ligands and related catalysts not only have shown high catalytic activity and high enantioselectivity for various asymmetric reactions such as asymmetric hydrogenations, asymmetric carbon-carbon bond forming reactions, and asymmetric carbon-heteroatom bond forming reactions, but also have made the enantiocontrol of many catalytic asymmetric reactions, which are difficult in obtaining high enantioselectivities, more easily and possible. The chiral spiro skeleton has become a ‘privileged structure’, and chiral spiro ligands and catalysts have been used in the syntheses of different type of chiral compounds including chiral natural products and chiral drugs. The emergence of chiral spiro ligands increased the dynamism of research on finding new chiral ligands and catalysts, and promoted asymmetric synthesis chemistry. Henceforth, the focus of study in chiral spiro ligands will continue to be the development of new chiral spiro ligands and catalysts with high activity and high enantioselectivity. At the same time, the applications of chiral spiro ligands in the new catalytic asymmetric reactions, and in the asymmetric synthesis of bioactive chiral compounds, chiral natural products and chiral drugs will become a new focus of research.

参考文献

[1] (a) Lin, G.-Q.; Li, Y.-M.; Chan, A. S. C. Priciples and Applications of Asymmetric Synthesis, Wiley, New York, 2001.
(b) Ed.: Ojima, I., Catalytic Asymmetric Synthesis, Wiley-VCH, New York, 2000.
(c) Xie, J.-H.; Zhou, Q.-L. Acta Chim. Sinica 2012, 70, 1427 (谢建华, 周其林, 化学学报, 2012, 70, 1427).
(d) Liu, Y.; Wang, Z.; Ding, K.-L. Acta Chim. Sinica 2012, 70, 1446 (刘龑, 王正, 丁奎岭, 化学学报, 2012, 70, 1446).
(e) Zheng, K.; Lin, L.-L.; Feng, X.-M. Acta Chim. Sinica 2012, 70, 1758 (郑柯, 林丽丽, 冯小明, 化学学报, 2012, 70, 1758).
[2] (a) Knowles, W. S.; Sabacky, M. J. J. Chem. Soc., Chem. Commun. 1968, 1445.
(b) Horner, L.; Siegel, H.; Büthe, H. Angew. Chem., Int. Ed. 1968, 7, 942.
[3] (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
(b) Ed.: Zhou, Q.-L., Privileged Chiral Ligands and Catalysts, Wiley-VCH Verlag GmbH & Co. KgaA, 2011.
[4] Knowles, W. S.; Sabacky, M. J.; Vineyard, B. D. J. Chem. Soc., Chem. Commun. 1972, 10.
[5] (a) Dang, T. P.; Kagan, H. G. J. Chem. Soc., Chem. Commun. 1972, 481.
(b) Dang, T. P.; Kagan, H. G. J. Am. Chem. Soc. 1972, 94, 6429.
[6] Knowles. W. S. Acc. Chem. Res. 1983, 16, 106.
[7] Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932.
[8] Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008.
[9] (a) Zhu, S. F.; Zhou, Q.-L. In Privileged Chiral Ligands and Catalysts, Ed.: Zhou, Q.-L., Wiley-VCH Verlag GmbH & Co. KgaA, 2011, pp. 137~170.
(b) Zhou, Q.-L.; Xie, J.-H. Top. Organomet. Chem. 2011, 36, 1.
(c) Ding, K.; Han, Z.; Wang, Z. Chem.-Asian J. 2009, 4, 32.
(d) Xie, J.-H.; Zhou, Q.-L. Acc. Chem. Res. 2008, 41, 581.
(e) Zhang, Z.-H. Chin. J. Org. Chem. 2005, 25, 355. (张占辉, 有机化学, 2005, 25, 355.)
[10] Srivastava, N.; Mital, A.; Kumar, A. Chem. Commun. 1992, 493.
[11] Chan, A. S. C.; Hu, W.-H.; Pai, C.-C.; Lau, C.-P.; Jiang, Y.-Z.; Mi, A.-Q.; Yan, M.; Sun, J.; Lou, R.-L.; Deng, J.-G. J. Am. Chem. Soc. 1997, 119, 9570.
[12] (a) Arai, M. A.; Arai, T.; Sasai, H. Org. Lett. 1999, 1, 1795.
(b) Arai, M. A.; Kuraishi, M.; Arai, T.; Sasai, H. J. Am. Chem. Soc. 2001, 123, 2907.
[13] Birman, V. B.; Rheingold, A. L.; Lam, K.-C. Tetrahedron: Asymmetry 1999, 1, 1975.
[14] (a) Hu, A.-G.; Fu, Y.; Xie, J.-H.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2002, 41, 2348.
(b) Fu, Y.; Xie, J.-H.; Hu, A.-G.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Chem. Commun. 2002, 480.
[15] Xie, J.-H.; Wang, L.-X.; Fu, Y.; Zhu, S.-F.; Fan, B.-M.; Duan, H.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2003, 125, 4404.
[16] Zhu, G.; Cao, P.; Jiang, Q.; Zhang, X. J. Am. Chem. Soc. 1997, 119, 1799.
[17] Han, Z.; Wang, Z.; Zhang, X.; Ding, K. Angew. Chem., Int. Ed. 2009, 48, 5345.
[18] (a) Jiang, Y.; Xue, S.; Li, Z.; Deng, J.; Mi, A.; Chan, A. S. C. Tetrahedron: Asymmetry 1998, 9, 3185.
(b) Jiang, Y.; Xue, S.; Yu, K.; Li, Z.; Deng, J.; Mi, A.; Chan, A. S. C. J. Organomet. Chem. 1999, 586, 159.
[19] Lin, C.-W.; Lin, C.-C.; Lam, L. F.-L.; Au-Yeung, T. T.-L.; Chan, A. S. C. Tetrahedron Lett. 2004, 45, 7379.
[20] Guo, Z.-Q.; Guan, X.-Y.; Chen, Z.-Y. Tetrahedron: Asymmetry 2006, 17, 468.
[21] Takizawa, S.; Honda, Y.; Arai, M. A.; Kato, T.; Sasai, H. Heterocycles 2003, 60, 2551.
[22] Kato, T.; Marubayashi, K.; Takizawa, S.; Sasai, H. Tetrahedron: Asymmetry 2004, 15, 3693.
[23] Bajracharya, G. B.; Arai, M. A.; Koranne, P. S.; Suzuki, T.; Takizawa, S.; Sasai, H. Bull. Chem. Soc. Jpn. 2009, 82, 285.
[24] Tsujihara, T.; Takenaka, K.; Onitsuka, K.; Hatanaka, M.; Sasai, H. J. Am. Chem. Soc. 2009, 131, 3452.
[25] Lait, S. M.; Parvez, M.; Keay, B. A. Tetrahedron: Asymmetry 2004, 15, 155.
[26] Benoit, W. L.; Parvez, M.; Keay, B. A. Tetrahedron: Asymmetry 2009, 20, 69.
[27] (a) Zhu, S.-F.; Xie, J.-H.; Liu, B.; Xing, L.; Zhou, Q.-L. Tetrahedron: Asymmetry 2003, 14, 3219.
(b) Fu, Y.; Hou, G.-H.; Xie, J.-H.; Xing, L.; Wang, L.-X.; Zhou, Q.-L. J. Org. Chem. 2004, 69, 8157.
(c) Fu, Y.; Guo, X.-X.; Zhu, S.-F.; Hu, A.-G.; Xie, J.-H.; Zhou, Q.-L. J. Org. Chem. 2004, 69, 4648.
[28] (a) Hou, G.-H.; Xie, J.-H.; Yan, P.-C.; Zhou, Q.-L. J. Am. Chem. Soc. 2009, 131, 1366.
(b) Yan, P.-C.; Xie, J.-H.; Hou, G.-H.; Wang, L.-X.; Zhou, Q.-L. Adv. Synth. Catal. 2009, 351, 3176.
[29] Shi, W.-J.; Zhang, Q.; Xie, J.-H.; Zhu, S.-F.; Hou, G.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 2780.
[30] (a) Yang, Y.; Zhu, S.-F.; Duan, H.-F.; Zhou, C.-Y.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 2248.
(b) Yang, Y.; Zhu, S.-F.; Zhou, C.-Y.; Zhou, Q.-L. J. Am. Chem. Soc. 2008, 130, 14052.
[31] Mai, D. N.; Wolfe, J. P. J. Am. Chem. Soc. 2010, 132, 12157.
[32] (a) Hopkins, B. A.; Wolfe, J. P. Angew. Chem., Int. Ed. 2012, 51, 9886.
(b) Babij, N. R.; Wolfe, J. P. Angew. Chem., Int. Ed. 2013, 52, 9247.
(c) Babij, N. R.; Rosen, B. R.; Wolfe, J. P. Org. Lett. 2011, 13, 2932.
[33] González, A. Z.; Benitez, D.; Tkatchouk, E.; Goddard, W. A.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 5500.
[34] Suárez-Pantiga, S.; Hernández-Díaz, C.; Rubio, E.; González, J. M. Angew. Chem., Int. Ed. 2012, 51, 11552.
[35] Coulter, M. M.; Kou, K. G. M.; Galligan, B.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 16330.
[36] Shi, W.-J.; Wang, L.-X.; Fu, Y.; Zhu, S.-F.; Zhou, Q.-L. Tetrahedron: Asymmetry 2003, 14, 3867.
[37] (a) Duan, H.-F.; Xie, J.-H.; Shi, W.-J.; Zhang, Q.; Zhou, Q.-L. Org. Lett. 2006, 8, 1479.
(b) Duan, H.-F.; Jia, Y.-X.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2006, 8, 2567.
(c) Duan, H.-F.; Xie, J.-H.; Qiao, X.-C.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2008, 47, 4351.
[38] Zhu, S.-F.; Qiao, X.-C.; Zhang, Y.-Z.; Wang, L.-X.; Zhou, Q.-L. Chem. Sci. 2011, 2, 1135.
[39] Hou, G.-H.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 11774.
[40] Zhu, S.-F.; Yang, Y.; Wang, L.-X.; Liu, B.; Zhou, Q.-L. Org. Lett. 2005, 7, 2333.
[41] Zhang, W.; Zhu, S.-F.; Qiao, X.-C.; Zhou, Q.-L. Chem.-Asian J. 2008, 3,2105.
[42] Zhou, C.-Y.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 10955.
[43] Chung, Y. K.; Fu, G. C. Angew. Chem., Int. Ed. 2009, 48, 2225.
[44] Lundgren, R. J.; Wilsily, A.; Marion, N.; Ma, C.; Chung, Y. K.; Fu, G. C. Angew. Chem., Int. Ed. 2013, 52, 2525.
[45] Xie, J.-H.; Duan, H.-F.; Fan, B.-M.; Cheng, X.; Wang, L.-X.; Zhou, Q.-L. Adv. Synth. Catal. 2006, 346, 625.
[46] Fan, B.-M.; Xie, J.-H.; Li, S.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2007, 46, 1275.
[47] (a) Zhou, Z.-T.; Xie, J.-H.; Zhou, Q.-L. Adv. Synth. Catal. 2009, 351, 363.
(b) Xie, J.-H.; Zhou, Z.-T.; Kong, W.-L.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 1868.
[48] (a) Xie, J.-H.; Liu, S.; Huo, X.-H.; Cheng, X.; Duan, H.-F.; Fan, B.-M.; Wang, L.-X.; Zhou, Q.-L. J. Org. Chem. 2005, 70, 2967.
(b) Liu, S.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2007, 46, 7506.
(c) Liu, S.; Xie, J.-H.; Li, W.; Kong, W.-L.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2009, 11, 4994.
(d) Xie, J.-H.; Liu, S.; Kong, W.-L.; Bai, W.-J.; Wang, X.-C.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2009, 131, 4222.
(e) Bai, W.-J.; Xie, J.-H.; Li, Y.-L.; Liu, S.; Zhou, Q.-L. Adv. Synth. Catal. 2010, 352, 81. (f) Cheng, L.-J.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Adv. Synth. Catal. 2012, 354, 1105. (g) Chen, J.-Q.; Xie, J.-H.; Bao, D.-H.; Liu, S.; Zhou, Q.-L. Org. Lett. 2012, 14, 2714. (h) Cheng, L.-J.; Xie, J.-H.; Chen, Y.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2013, 15, 764. (i) Li, G.; Xie, J.-H.; Hou, J.; Zhu, S.-F.; Zhou, Q.-L. Adv. Synth. Catal. 2013, 355, 1597. (j) Liu, C.; Xie, J.-H.; Li, Y.-L.; Chen, J.-Q.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2013, 52, 593.
[49] (a) Cheng, X.; Zhang, Q.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2005, 44, 1118.
(b) Cheng, X.; Xie, J.-H.; Li, S.; Zhou, Q.-L. Adv. Synth. Catal. 2006, 348, 1271.
[50] Tang, W.-J.; Zhu, S.-F.; Xu, L.-J.; Zhou, Q.-L.; Fan, Q.-H.; Zhou, H.-F.; Lam, K.; Chan, A. S. C. Chem. Commun. 2007, 613.
[51] (a) Schnider, P.; Koch, G.; Pretot, R.; Wang, G.; Bohnen, M.; Kruger, C.; Pfaltz, A. Chem. Eur. J. 1997, 3, 887.
(b) Lightfoot, A.; Schnider, P.; Pfaltz, A. Angew. Chem., Int. Ed. 1998, 37, 2897.
(c) Kainz, S.; Brinkmann, A.; Leitner, W.; Pflatz, A. J. Am. Chem. Soc. 1999, 121, 6421.
[52] Zhu, S.-F.; Xie, J.-B.; Zhang, Y.-Z.; Li, S.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 12886.
[53] (a) Li, S.; Zhu, S.-F.; Zhang, C.-M.; Song, S.; Zhou, Q.-L. J. Am. Chem. Soc. 2008, 130, 8584.
(b) Li, S.; Zhu, S.-F.; Xie, J.-H.; Song, S.; Zhang, C.-M.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 1172.
(c) Song, S.; Zhu, S.-F.; Pu, L.-Y.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2013, 52, 6072.
[54] (a) Song, S.; Zhu, S.-F.; Yang, S.; Li, S.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2012, 51, 2708.
(b) Song, S.; Zhu, S.-F.; Yu, Y.-B.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2013, 52, 1556.
[55] (a) Xie, J.-B.; Xie, J.-H.; Liu, X.-Y.; Kong, W.-L.; Li, S.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 4538.
(b) Xie, J.-B.; Xie, J.-H.; Liu, X.-Y.; Zhang, Q.-Q.; Zhou, Q.-L. Chem.-Asian J. 2011, 6, 899.
(c) Zhu, S.-F.; Yu, Y.-B.; Li, S.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2012, 51, 8872.
[56] (a) Xie, J.-H.; Liu, X.-Y.; Xie, J.-B.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2011, 50, 7329.
(b) Xie, J.-H.; Liu, X.-Y.; Yang, X.-H.; Xie, J.-B.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2012, 51, 201.
(c) Yang, X.-H.; Xie, J.-H.; Zhou, Q.-L. Org. Chem. Front. 2014, 1, 190.
[57] Yan, P.-C.; Zhu, G.-L.; Xie, J.-H.; Zhang, X.-D.; Zhou, Q.-L.; Li, Y.-Q.; Shen, W.-H.; Che, D.-Q. Org. Process Res. Dev. 2013, 17, 307.
[58] Yang, X.-H.; Xie, J.-H.; Liu, W.-P.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2013, 52, 7833.
[59] Arai, N.; Ohkuma, T. Chem. Rec. 2012, 12, 284.
[60] Liu, B.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. Tetrahedron: Asymmetry 2006, 17, 634.
[61] Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012, 45, 1365.
[62] (a) Liu, B.; Zhu, S.-F.; Zhang, W.; Chen, C.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 5834.
(b) Zhu, S.-F.; Xu, B.; Wang, G.-P.; Zhou, Q.-L. J. Am. Chem. Soc. 2012, 134, 436.
[63] Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L. Nat. Chem. 2010, 2, 546.
[64] Xie, X.-L.; Zhu, S.-F.; Guo, J.-X.; Cai, Y.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2014, 53, 2978.
[65] Su, W.; Ma, S. Chem. Commun. 2009, 6198.
[66] Shu, W.; Yu, Q.; Ma, S. Adv. Synth. Catal. 2009, 351, 2807.
[67] Zhang, Y.-Z.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2008, 47, 8496.
[68] Hoffman, T. J.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 10670.
[69] (a) Zhang, Y.; Han, Z.; Li, F.; Ding, K.; Zhang, A. Chem. Commun. 2010, 46, 156.
(b) Shang, J.; Han, Z.; Li, Y.; Wang, Z.; Ding, K. Chem. Commun. 2012, 48, 5172.
(c) Wang, X.; Han, Z.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 936.
[70] Han, Z.; Wang, Z.; Zhang, X.; Ding, K. Chin. Sci. Bull. 2010, 55, 2840.
[71] Han, Z.; Wang, Z.; Zhang, X.; Ding, K. Scientia Sinica Chimica 2010, 40, 950. (韩召斌, 王正, 张绪穆, 丁奎岭, 中国科学?化学, 2010, 40, 950.)
[72] Shimizu, H.; Igarashi, D.; Kuriyama, W.; Yusa, Y.; Sayo, N.; Saito, T. Org. Lett. 2007, 9, 1655.
[73] Han, Z.; Wang, Z.; Zhang, X.; Ding, K. Tetrahedron: Asymmetry 2010, 21, 1529.
[74] (a) Freixa, Z.; Beentjes, M. S.; Batema, G. D.; Dieleman, C. B.; van Strijdonck, G. P. F.; Reek, J. N. H.; Kamer, P. C. J.; Fraanje, J.; Goubitz, K.; van Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 2003, 42, 1284.
(b) Freixa, Z.; Kamer, P. C. J.; Lutz, M.; Spek, A. L.; van Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 2005, 44, 4384.
[75] Jacquet, O.; Clément, N. D.; Blanco, C.; Belmonte, M. M.; Benet-Buchholz, J.; van Leeuwen, P. W. M. N. Eur. J. Org. Chem. 2012, 4844.
[76] (a) Wang, X.; Meng, F.; Wang, Y.; Han, Z.; Chen, Y.-J.; Liu, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 9276.
(b) Wang, X.; Guo, P.; Wang, X.; Wang, Z.; Ding, K. Adv. Synth. Catal. 2013, 355, 2900.
[77] Wang, X.; Guo, P.; Han, Z.; Wang, X.; Wang, Z.; Ding, K. J. Am. Chem. Soc. 2014, 136, 405.
[78] Cao, Z.-Y.; Wang, X.; Tan, C.; Zhao, X.-L.; Zhou, J.; Ding, K. J. Am. Chem. Soc. 2013, 135, 8197.
[79] Sala, X.; Suárez, E. J. G.; Freixa, Z.; Benet-Buchholz, J.; van Leeuwen, P. W. N. M. Eur. J. Org. Chem. 2008, 6197.
[80] Jacquet, O.; Clément, N. D.; Freixa, Z.; Ruiz, A.; Claver, C.; van Leeuwen, P. W. N. M. Tetrahedron: Asymmetry 2011, 22, 1490.
[81] Li, J.; Chen, G.; Wang, Z.; Zhang, R.; Zhang, X.; Ding, K. Chem. Sci. 2011, 2, 1141.
[82] Li, J.; Pan, W.; Wang, Z.; Zhang, X.; Ding, K. Adv. Synth. Catal. 2012, 354, 1980.
[83] Wu, S.-L.; Zhang, W.-C.; Zhang, Z.-G.; Zhang, X.-M. Org. Lett. 2004, 6, 3565.
[84] Zhang, W.; Wang, C.-J.; Gao, W.; Zhang, X. Tetrahedron Lett. 2005, 46, 6087.
[85] Hou, X.-H.; Xie, J.-H.; Wang, Q.-S.; Zhou, Q.-L. Adv. Synth. Catal. 2007, 349, 2477.
[86] Khlebnikov, A. F.; Kozhushkov, S. I.; Yufit, D. S.; Schill, H.; Reggelin, M.; Spohr, V.; de Meijere, A. Eur. J. Org. Chem. 2012, 1530.
[87] Shibatomi, K.; Muto, T.; Sumikawa, Y.; Narayama, A.; Iwasa, S. Synlett 2009, 241.
[88] (a) Shibatomi, K.; Narayama, A.; Soga, Y.; Muto, T.; Iwasa, S. Org. Lett. 2011, 13, 2944.
(b) Shibatomi, K.; Soga, Y.; Narayama, A.; Fujisawa, I.; Iwasa, S. J. Am. Chem. Soc. 2012, 134, 9836.
(c) Narayama, A.; Shibatomi, K.; Soga, Y.; Muto, T.; Iwasa, S. Synlett 2013, 375.
文章导航

/