主族金属氨基酸配合物的晶体学研究进展
收稿日期: 2014-06-21
网络出版日期: 2014-09-10
基金资助
项目受国家自然科学基金(Nos. 21271026,21071018)和教育部博士点专项基金(No. 20091101110038)资助
Advances in Crystallography of Coordination Complexes on Main Group Metals with Amino Acid Ligands
Received date: 2014-06-21
Online published: 2014-09-10
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21271026, 21071018) and the Specialized Research Fund for the Doctoral Program of Higher Education, State Education Ministry of China (No. 20091101110038).
主族金属配合物的研究是配位化学的重要主题之一. 相对于过渡金属和稀土金属配合物而言, 主族金属配合物的研究比较薄弱, 其主要原因在于: 主族金属的闭壳层电子层结构、有限的价电子数和较少的氧化态等特点, 使得主族金属与有机配体的相互作用较弱, 作用模式较为单一. 但近年来, 随着合成技术与分析检测技术的不断提升, 具有新颖结构并具有与过渡金属配合物相似的优良性能的主族金属配合物也不断地进入了人们的视野. 作为生物体的基本结构单元的氨基酸是一类良好的功能配体, 主族金属氨基酸配合物的研究具有重要的学术价值和应用价值, 也是化学、生物、医药和材料等众多学科领域中的共同的基本问题. 解决基本问题的一个切入点可能是研究这些新型主族金属氨基酸配合物的分子结构与物质结构. 因此, 本工作基于2000年以后发表的主族金属氨基酸配合物的晶体结构, 从X射线晶体学的研究视角, 分析了新型的主族金属氨基酸配合物的结构多样性, 包括当前热门的MOF类的结构; 综述了主族金属氨基酸配合物的研究进展; 展望了未来这一领域的发展方向; 提出了以功能为导向系统地开展主族金属氨基酸的配位化学和超分子化学的研究思路. 谨以此文献给2014年国际晶体学年.
董璐 , 郑春英 , 周培 , 施如菲 , 李晖 . 主族金属氨基酸配合物的晶体学研究进展[J]. 化学学报, 2014 , 72(9) : 981 -1000 . DOI: 10.6023/A14060477
The study of main-group metal elements and their coordination complexes with amino acids is an important theme in coordination chemistry, but it has often been overshadowed by the intense interest in transition-metal coordination complexes. In recent years, there has been a growing interest in main-group compounds, extending across all members of s- and p- blocks in the Period Table, which has resulted in the discovery of numerous new classes of compounds with previously unknown structures and bonding. Among these achievements, the coordination complexes of main group metals with amino acid ligands are especially notable. As a kind of functional ligand, amino acids set up a bridge of interdisciplinary subjects between coordination chemistry and biology. The research on coordination chemistry of main group metals with amino acid ligands will benefit to understanding of the biological effects of main group metals; developing new medicine; designing and synthesizing functional and environmental friendly materials. To achieve these targets, the structural information of these new coordination complexes is very important and it provides fundamental knowledge for more extensive investigation in the future. Therefore, this review focus on the single crystal structures of the coordination complexes of main group metals with amino acid ligands based on X-ray crystallography. Literature coverage is around the last 15 years and ends to May 2013 although some older works are also included for comparing. Specially, this article has been written to commemorate 2014 the International Year of Crystallography declared by United Nations.
[1] Philip, P. P.; François, P. G. Inorg. Chem. 2011, 50, 12221.
[2] Power, P. P. Nature 2010, 463, 171.
[3] Power, P. P. Nat. Chem. 2012, 4, 343.
[4] Mandal, S. K.; Roesky, H. W. Acc. Chem. Res. 2012, 45, 298.
[5] Power, P. P. Acc. Chem. Res. 2011, 44, 627.
[6] Fang, H.-Y.; Ling, Z.; Brothers, P.; Fu, X.-F. Chem. Commun. 2011, 47, 11677.
[7] Yao, S.; Xiong, Y.; Driess, M. Organometallics 2011, 30, 1748.
[8] Mazumder, B.; Hector, A. L. J. Mater. Chem. 2009, 19, 4673.
[9] Dehnicke, K.; Weller, F.; Strähle, J. Chem. Soc. Rev. 2001, 30, 125.
[10] Fang, H.-Y.; Ling, Z.; Fu, X.-F. Chin. J. Org. Chem. 2013, 33, 738. (房华毅, 凌镇, 付雪峰, 有机化学, 2013, 33, 738.)
[11] Balakrishnan, T.; Ramamurthi, K. Cryst. Res. Technol. 2006, 41, 1184.
[12] Devi, T. U.; Lawrence, N.; Babu, R. R.; Selvanayagam, S.; Evans, H. S.; Ramamurthi, K. Cryst. Growth Des. 2009, 9, 1370.
[13] Dhanaraj, P. V.; Rajesh, N. P. Phys. B: Condens. Matter 2011, 406(1), 12.
[14] Xu, J.; Su, L.-B. J. Inorg. Mater. 2011, 26, 347. (徐军, 苏良碧, 无机材料学报, 2011, 26, 347.)
[15] Imaz, I.; Rubio-Martínez, M.; Saletra, W. J.; Amabilino, D. B.; Maspoch, D. J. Am. Chem. Soc. 2009, 131, 18222.
[16] Xie, Y.-H. Journal of Anqing Teachers College (Natural Science Edition) 1995, (4), 100. (谢言慧, 安庆师范学院学报(自然科学版), 1995, (4), 100.)
[17] Fraústo da Silva, J. J. R.; Williams, R. J. P. The Biological Chemistry of the Elements, 2nd ed., Oxford University Press, Oxford, U.K., 2001, Chapter 10.
[18] Kretsinger, R. H.; Nelson, D. J. Coord. Chem. Rev. 1976, 18, 29.
[19] Schrooten, I.; Behets, G. J. S.; Cabrera, W. E.; Vercauteren, S. R.; Lamberts, L. W.; Verberckmoes, S. C.; Bervoets, A. J.; Dams, G.; Goodman, W. G.; De Broe, M. E.; D'Haese, P. C. Kidney Int. 2003, 63, 927.
[20] Yu, J.-L.; Cong, Y.; Quan, X.-D; Wu, J.-J. CN 102188692, 2011 [Chem. Abstr. 2011, 155, 493716]. (俞嘉林, 从艳, 权晓丹, 吴晶晶, CN 102188692, 2011.)
[21] Li, Y.-C.; Cao, Z.; Guo, J.-H.; Li, C.-Y.; He, D. CN 103861093, 2014 [Chem. Abstr. 2014, 161, 162332]. (李阳春, 曹政, 郭建华, 李春燕, 何丹, CN 103861093, 2014.)
[22] Peng, Z.-P.; Yang, S.-H.; Zhang, Z.-T.; Yao, L.-X. CN 1686958, 2005 [Chem. Abstr. 2006, 145, 82689]. (彭智平, 杨少海, 张壮塔, 姚丽贤, CN 1686958, 2005.)
[23] Peng, Z.-P.; Yang, S.-H.; Cao, J.-X.; Yang, L.-X.; Huang, Y.-L.; Lin, Z.-J. CN 1742578, 2005 [Chem. Abstr. 2006, 144, 406353]. (彭智平, 杨少海, 操君喜, 杨林香, 黄玉莲, 林志军, CN 1742578, 2005.)
[24] Yuan, L.; Li, Y.-T.; Zhao, B.-Q.; Li, W.; Wang, W.; Lin, Z.-A.; Wen, Y.-C.; Yang, X.-D.; Li, J. CN 103787756, 2014 [Chem. Abstr. 2014, 160, 739677]. (袁亮, 李燕婷, 赵秉强, 李伟, 王薇, 林治安, 温延臣, 杨相东, 李娟, CN 103787756, 2014.)
[25] Wang, W.; Yan, L.; Wei, D.; Hou, Z.-A.; Long, X.-Q.; Chen, Q.; Kong, J.-J.; Cui, W.-D.; Zhan, F.-Q.; Zhang, X.-L.; Bao, H.-F. CN 101058522, 2007 [Chem. Abstr. 2007, 147, 501742]. (王玮, 闫论, 魏东, 侯振安, 龙宣杞, 陈清, 孔建军, 崔卫东, 詹发强, 张晓琳, 包慧芳, CN 101058522, 2007.)
[26] Yan, L. Chin. J. Chem. 2004, 22, 822.
[27] Hu, M.-C.; Yang, Q.; Jiang, Y.-C.; Xia, S.-P. Chin. J. Chem. 2005, 23, 715.
[28] Duan, Y.-F. M.S. Thesis, Henan University, Kaifeng, 2007. (段玉芳, 硕士论文, 河南大学, 开封, 2007.)
[29] Li, W.-J.; Yang, L.; Cai, D.-M.; Lin, K.-H.; Lou, Q.-L.; Shi, Z. Chinese J. Inorg. Chem. 1995, 11, 296. (李五聚, 杨林, 蔡冬梅, 林昆华, 娄全龄, 史讃, 无机化学学报, 1995, 11, 296.)
[30] Luan, S.-R.; Zhu, Y.-H.; Jia, Y.-Q. J. Therm. Anal. Calorim. 2009, 95, 951.
[31] Wang, M.-Z.; Hu, Q.; Liang, D.-J.; Li, Y.; Li, S.-H.; Zhang, X.; Xi, M.-X.; Yang, X.-J. Appl. Clay Sci. 2013, 83-84, 182.
[32] Robina, A.; Garima, M. E-J. Chem. 2013.
[33] Singh, H. L. Spectrochim. Acta A 2010, 76, 253.
[34] Singh, H. L.; Singh, J. B.; Sachedva, H. Spectrosc. Lett. 2013, 46, 286.
[35] Singh, H. L.; Singh, J. B. Res. Chem. Intermediat. 2013, 39, 1997.
[36] Singh, H. L.; Chauhan, S. S.; Sachedva, H. Res. Chem. Intermed. 2010, 36, 1037.
[37] Xu, J.-G.; Pan, Z.-R.; Zheng, H.-G. Chinese J. Inorg. Chem. 2009, 25, 1551. (徐基贵, 潘兆瑞, 郑和根, 无机化学学报, 2009, 25, 1551.)
[38] Zhang, L.-Z. M.S. Thesis, Henan University, Kaifeng, 2012. (张丽枝, 硕士论文, 河南大学, 开封, 2012.)
[39] Fu, X.-F.; Fang, H.-Y.; Yun, L. In the 29th CCS Congress, Chapter 5: Inorganic Chemistry, Beijing, 2014. (付雪峰, 房华毅, 贠琳, 中国化学会第29届学术年会摘要集, 第05分会: 无机化学, 北京, 2014.)
[40] Tang, Y.; Zhou, J. CN 1513847, 2004 [Chem. Abstr. 2005, 143, 248373]. (唐勇, 周剑, CN 1513847, 2004.)
[41] Liu, Z. M.S. Thesis, Jiangnan University, Wuxi, 2013. (刘臻, 硕士论文, 江南大学, 无锡, 2013.)
[42] Pan, X.-B. Ph.D. Dissertation, Lanzhou University, Lanzhou, 2010. (潘效波, 博士论文, 兰州大学, 兰州, 2010.)
[43] Liu, G.-N.; Guo, G.-C. In The 27th CCS Congress, Chapter 8, Xiamen, 2010. (刘广宁, 郭国聪, 中国化学会第27届学术年会第08分会场摘要集, 厦门, 2010.)
[44] Nat. Struct. Biol. 2001, 8, 909.
[45] Cryst. Growth Des. 2014, 14, 1.
[46] Schmidbaur, H.; Classen, H. G.; Helbig, J. Angew. Chem. Int. Ed. Engl. 1990, 29, 1090.
[47] Fromm, K. M. Coord. Chem. Rev. 2008, 252, 856.
[48] Wiesbrock, F.; Schmidbaur, H. CrystEngComm 2003, 5, 262.
[49] Beinert, H. J. Biol. Chem. 2002, 41, 37967.
[50] Biomineralization, Eds.: Mann, S.; Webb, J.; Williams, R. J. P., Wiley-VCH, Weinheim, 1989.
[51] Fleck, M.; Bohatý, L. Acta Crystallogr. 2004, C60, m291.
[52] Hudson, M. R.; Allis, D. G.; Ouellette, W.; Hakey, P. M.; Hudson, B. S. J. Mol. Struct. 2009, 934, 138.
[53] Kumar, M. R. S.; Ravindra, H. J.; Dharmaprakash, S. M. J. Cryst. Growth 2007, 306, 361.
[54] Selvakumar, P. N.; Natarajan, B.; Rao, P. S.; Subramanian, P. Cryst. Res. Technol. 2008, 43, 857.
[55] Baran, J.; Drozd, M.; Ratajczak, H.; Pietraszko, A. J. Mol. Struct. 2009, 927, 43.
[56] Baran, J.; Drozd, M.; Pietraszko, A.; Trzebiatowska, M.; Ratajczak, H. Polish J. Chem. 2003, 77, 1561.
[57] Ong, T. T.; Kavuru, P.; Nguyen, T.; Cantwell, R.; Wojtas, ?.; Zaworotko, M. J. J. Am. Chem. Soc. 2011, 133, 9224.
[58] Balakrishnan, T.; Ramamurthi, K.; Jeyakanthan, J.; Thamotharan, S. Acta Crystallogr. 2013, E69, m60.
[59] Krishnakumar, R. V.; Nandhini, M. S.; Natarajan, S.; Sivakumar, K.; Varghese, B. Acta Crystallogr. 2001, C57, 1149.
[60] Verbist, J.; Putzeys, J. P.; Piret, P.; Meerssche, M. V. Acta Crystallogr. 1971, B27, 1190.
[61] Fleck, M.; Bohatý, L. Acta Crystallogr. 2006, C62, m22.
[62] Hecke, K. V.; Cartuyvels, E.; ParacVogt, T. N.; Walrand, C. G.; Meervelt, L. V. Acta Crystallogr. 2007, E62, m2354.
[63] Cindri?, M.; Novak, T. K.; Kraljevi?, S.; Kralj, M.; Kamenar, B. Inorg. Chim. Acta 2006, 359, 1673.
[64] Fleck, M.; Bohatý, L. Acta Crystallogr. 2005, C61, m412.
[65] Shannon, R. D. Acta Crystallogr. 1976, A32, 751.
[66] Fleck, M.; Bohatý, L. Acta Crystallogr. 2005, E61, m1887.
[67] Clegg, W.; Lacy, O. M.; Straughan, B. P. Acta Crystallogr. 1987, C43, 794.
[68] Fleck, M.; Bohatý, L. Acta Crystallogr. 2005, E61, m1890.
[69] Elayaraja, K.; Parthiban, S. P.; Ramalingom, S.; Bocelli, G.; Kalkura, S. N. Acta Crystallogr. 2007, E63, m2901.
[70] Peterková, J.; Podlahová, J.; Loub, J.; Mi?ka, Z. Acta Crystallogr. 1991, C47, 2664.
[71] Tepavitcharova, S.; Rabadjieva, D.; Havlí?ek, D.; Němec, I.; Vojtíšek, P.; Plocek, J.; Koleva, Z. J. Mol. Struct. 2012, 1018, 113.
[72] Balkunova, L. P.; Kydynov, M. K. Zh. Neorg. Khim. 1990, 35, 2977 (in Russian).
[73] Strasdeit, H.; Fox, S.; Denysenko, D. In EANA07-7th European Workshop on Astrobiology, Abstract Book, Turku, Finland, 2007, p. 34.
[74] Fox, S.; Strasdeit, H. In EANA07-7th European Workshop on Astrobiology, Abstract Book, Turku, Finland, 2007, p. 81.
[75] Fox, S.; Büsching, I.; Barklage, W.; Strasdeit, H. Inorg. Chem. 2007, 46, 818.
[76] Laurie, S. H. In Handbook of Metal-Ligand Interactions in Biological Fluids: Bioinorganic Chemistry, Vol. 1, Ed.: Berthon, G., Dekker, New York, 1995, pp. 603~619.
[77] Faure, H.; Favier, A. In Handbook of Metal-Ligand Interactions in Biological Fluids: Bioinorganic Chemistry, Vol. 2, Ed.: Berthon, G., Dekker, New York, 1995, pp 1163~1169.
[78] Yusenko, K.; Fox, S.; Guni, P.; Strasdeit, H. Z. Anorg. Allg. Chem. 2008, 634, 2347.
[79] Cambridge Structural Database, Version 5.29, updated January 2008; Allen, F. H. Acta Crystallogr. 2002, B58, 380.
[80] Fleck, M.; Schwendtner, K.; Hensler, A. Acta Crystallogr. 2006, C62, m122.
[81] Natarajan, S.; Rao, J. K. M. Z. Kristallogr. 1980, 152, 179.
[82] Natarajan, S. Ph.D. Thesis, Madurai Kamaraj University, Madurai, 1976.
[83] Rao, J. K. M.; Natarajan, S. Acta Crystallogr. 1980, B36, 1058.
[84] Natarajan, S.; Rao, J. K. M. J. Inorg. Nucl. Chem. 1981, 43, 1693.
[85] Ravikumar, K.; Rajan, S. S.; Natarajan, S.; Ponnuswamy, M. N.; Trotter, J. Z. Kristallogr. 1986, 175, 217.
[86] Natarajan, S.; Shanmugam, G.; Dhas, S. A. M. B.; Athimoolam, S. Acta Crystallogr. 2007, E63, m2897.
[87] Christgau, S.; Odderhede, J.; Stahl, K.; Andersen, J. E. T. Acta Crystallogr. 2005, C61, m259.
[88] Price, D. J.; Powell, A. K.; Wood, P. T. Polyhedron 1999, 18, 2499.
[89] Schmidbaur, H.; Bach, I.; Wilkinson, D. L.; Müller, G. Chem. Ber. 1989, 122, 1433.
[90] Fleck, M.; Lengauer, C.; Bohatý, L.; Tillmanns, E. Acta Chim. Slov. 2008, 55, 880.
[91] Natarajan, S.; Sundar, J. K.; Athimoolam, S.; Srinivasan, B. R. J. Coord. Chem. 2011, 64, 2274.
[92] Janiak, C.; Vieth. J. K. New J. Chem. 2010, 34, 2366.
[93] Batten, S. R.; Neville, S. M.; Turner, D. R. Coordination Polymers: Design, Analysis and Application, RSC Publishing, Cambridge UK, 2009.
[94] Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O’Keeffe, M.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257.
[95] Natarajan, S.; Mahata, P. Chem. Soc. Rev. 2009, 38, 2304.
[96] Biradha, K.; Ramanan, A.; Vittal, J. J. Cryst. Growth Des. 2009, 9, 2969.
[97] Schafer, S. G.; Dawes, R. L. F.; Elsenhans, B.; Forth, W.; Schumann, K. In Toxicology, Ed.: Marquardt, H., Academic Press, San Diego, California, 1999, pp. 755~756.
[98] Galvan-Arzate, S.; Santamaria, A. Toxicol. Lett. 1998, 99, 1.
[99] Handbook on Toxicity of Inorganic Compounds, Ed.: Seiler, H. G., Marcel Dekker Inc., New York, 1988, Chapter 3.1.
[100] Feldman, R. G. Occupational and Environmental Neurotoxicology, Lippincott-Raven, Philadelphia, PA, 1998, Chapter 4.
[101] Castellino, N.; Sannolo, N.; Castellino, P. Inorganic Lead Exposure: Metabolism and Intoxication, CRC Press Inc., Boca Raton, FL, 1994.
[102] Claudio, E. S.; Godwin, H. A.; Magyar, J. S. In Progress in Inorganic Chemistry, Vol. 51, Ed.: Karlin, K. D., John Wiley & Sons, Inc., New York, 2002, pp. 1~145.
[103] Sun, X.; Tian, X.; Tomsig, J. L.; Suszkiw, J. B. Toxicol. Appl. Pharmacol. 1999, 156, 40.
[104] Chisholm, J. J. Scientific American 1971, 224, 15.
[105] Shimoni-Livny, L.; Glusker, J. P.; Bock, C. W. Inorg. Chem. 1998, 37, 1853.
[106] Hasnaoui, M. A.; Simon-Masseron, A.; Gramlich, V.; Patarin, J.; Bengueddach, A. Eur. J. Inorg. Chem. 2005, 536.
[107] Parise, J. B. J. Chem. Soc., Chem. Commun. 1985, 606.
[108] Estermann, M.; McCusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H. Nature 1991, 352, 320.
[109] Josien, L.; Simon-Masseron, A.; Gramlich, V.; Patarin, J. Chem. Eur. J. 2002, 8, 1614.
[110] Josien, L.; Simon, A.; Gramlich, V.; Patarin, J. Chem. Mater. 2001, 13, 1305.
[111] Millange, F.; Walton, R. I.; Guillou, N.; Loiseau, T.; O’Hare, D.; Fěrey, G. Chem. Mater. 2002, 14, 4448.
[112] Bonhomme, F.; Thoma, S. G.; Nenoff, T. M. J. Mater. Chem. 2001, 11, 2559.
[113] Wragg, D. S.; Slawin, A. M. Z.; Morris, R. E. J. Mater. Chem. 2001, 11, 1850.
[114] Patarin, J.; Paillaud, J. L.; Kessler, H. In Handbook of Porous Solids, Vol. 2, Eds.: Schüth, F.; Sing, K. S. W.; Weitkamp, J., Wiley-VCH Verlag GmbH, Germany, 2002, pp. 815~876.
[115] Bodner, T.; Wirnsberger, B.; Albering, J.; Wiesbrock, F. Dalton Trans. 2011, 40, 10885.
[116] Schmidbaur, H.; Bach, I.; Wilkinson, D. L.; Müller, G. Chem. Ber. 1989, 122, 1427.
[117] Gasque, L.; Bernès, S.; Ferrari, R.; de Barbarín, C. R.; de Jesus Gutiěrrez, M.; Mendoza-Díaz, G. Polyhedron 2000, 19, 649.
[118] Burford, N.; Eelman, M. D.; LeBlanc, W. G.; Cameron, T. S.; Robertson, K. N. Chem. Commun. 2004, 332.
[119] Marandi, F.; Shahbakhsh, N. J. Coord. Chem. 2007, 60, 2589.
[120] Marandi, F.; Shahbakhsh, N. Z. Anorg. Allg. Chem. 2007, 633, 1137.
[121] Janiak, C.; Temizdemir, S.; Scharmann, T. G.; Schmalstieg, A.; Demtschuk, J. Z. Anorg. Allg. Chem. 2000, 626, 2053.
[122] Bernès, S.; Gasque, L. Acta Crystallogr. 2008, E64, m566.
[123] Apfelbaum-Tibika, F.; Bino, A. Inorg. Chem. 1984, 23, 2902.
[124] Gasque, L.; Verhoeven, M. A.; Bernès, S.; Barrios, F.; Haasnoot, J. G.; Reedijk, J. Eur. J. Inorg. Chem. 2008, 4395.
[125] Saunders, C. D. L.; Longobardi, L. E.; Burford, N.; Lumsden, M. D.; Werner-Zwanziger, U.; Chen, B. H.; McDonald, R. Inorg. Chem. 2011, 50, 2799.
/
〈 |
|
〉 |