硫掺杂碳纳米笼的制备及其氧还原性能研究
收稿日期: 2014-05-27
修回日期: 2014-09-15
网络出版日期: 2014-09-15
基金资助
项目受国家自然科学基金(Nos. 51232003, 21473089, 21173115, 21173114, 21203092)﹑“973”项目(No. 2013CB932902)﹑江苏省科技支撑项目(No. BE2012159)和苏州市科技计划项目(No. ZXG2013025)资助.
Synthesis and Electrocatalytic Oxygen Reduction Performance of the Sulfur-Doped Carbon Nanocages
Received date: 2014-05-27
Revised date: 2014-09-15
Online published: 2014-09-15
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 51232003, 21473089, 21173115, 21173114, 21203092), "973" program (No. 2013CB932902) and Jiangsu Province Science and Technology Support Project (No. BE2012159), Suzhou Science and Technology Plan Projects (No. ZXG2013025).
王立伟 , 冯瑞 , 夏婧竹 , 陈盛 , 吴强 , 杨立军 , 王喜章 , 胡征 . 硫掺杂碳纳米笼的制备及其氧还原性能研究[J]. 化学学报, 2014 , 72(10) : 1070 -1074 . DOI: 10.6023/A14050409
The sluggish oxygen reduction reaction (ORR) is the bottleneck in the development of fuel cells, and replacing precious and nondurable Pt catalysts by the material with low cost, high activity and good stability is a main challenge. Carbon-based metal-free ORR electrocatalysts have become a promising alternative of commercial Pt/C catalyst due to their superior catalytic activity, high stability and low cost. Recent studies revealed that the doping of N, B, P or S atoms could boost the ORR electrocatalytic performance of carbon nanomaterials, and the catalytic activities were highly dependent on the doping elements, amounts and microstructures. In this study, sulfur-doped carbon nanocages (SCNCs) were synthesized by chemical vapor deposition method using in situ generated MgO as template and thiophene/benzene as precursors. The resultant SCNCs possessed high specific surface area of ca. 1000 m2·g-1, abundant pore structure and superior graphitization degree. The X-ray photoelectron spectroscopy result showed sulfur atoms were doped into the carbon framework as the C―S―C moieties. The content of sulfur in the SCNCs was adjusted in the range of 0~3.45 at% by changing the amount of thiophene in the precursor. All the SCNCs samples had comparable specific surface area and similar pore structure. As an electrocatalyst for oxygen reduction reaction (ORR) in alkaline medium, the SCNCs exhibited a sulfur-content-dependent performance. The SCNCs with sulfur content of 0.84 at% demonstrated the optimal ORR performance. With further increasing the sulfur content, the ORR performance of the SCNCs gradually degraded and even inferior to that of the pure CNCs when the sulfur content was higher than 1.61 at%. In addition, the SCNCs showed better stability and immunity to methanol crossover than the Pt/C catalyst. This result is suggestive for designing advanced metal-free ORR electrocatalysts by regulating the species and content of dopants and doping microstructures.
Key words: carbon nanocages; sulfur doping; oxygen reduction; metal-free; fuel cells
[1] Chu, S.; Majumdar, A. Nature 2012, 488, 294.
[2] Zhang, D.; Zhang, C.-Z.; Mu, D.-B.; Wu, B.-R.; Wu, F. Acta Chim. Sinica 2013, 71, 1101. (张栋, 张存中, 穆道斌, 吴伯荣, 吴锋, 化学学报, 2013, 71, 1101.)
[3] Yang, C. J. Energy Policy 2009, 37, 1805.
[4] Lu, Z.-J.; Xu, M.-W.; Bao, S.-J.; Chai, H. Acta Chim. Sinica 2013, 71, 957. (鲁振江, 徐茂文, 包淑娟, 柴卉, 化学学报, 2013, 71, 957)
[5] Gasteiger, H. A.; Markovic, N. M. Sicence 2009, 324, 48.
[6] Zheng, L.-Z.; Tao, K.; Xiong, L.-Y.; Ye, D.; Han, K.; Ji, Y. Acta Chim. Sinica 2012, 70, 2342. (郑龙珍, 陶堃, 熊乐艳, 叶丹, 韩奎, 纪忆, 化学学报, 2012, 70, 2342.)
[7] Yang, L.-J.; Zhao, Y.; Chen, S.; Wu, Q.; Wang, X.-Z.; Hu, Z. Chin. J. Catal. 2013, 34, 1986. (杨立军, 赵宇, 陈盛, 吴强, 王喜章, 胡征, 催化学报, 2013, 34, 1986.)
[8] Gong, K.-P.; Du, F.; Xia, Z.-H.; Durstock, M.; Dai, L.-M. Science 2009, 323, 760.
[9] Qu, L.-T.; Liu, Y.; Baek, J. B.; Dai, L.-M. ACS Nano 2010, 4, 1321.
[10] Liu, R.-L.; Wu, D.-P.; Feng, X.-L.; Müllen, K. Angew. Chem. Int. Ed. 2010, 49, 1.
[11] Lyth, S. M.; Nabae, Y.; Moriya, S.; Kuroki, S.; Kakimoto, M.; Ozaki, J.; Miyata, S. J. Phys. Chem. C 2009, 113, 20148.
[12] Yang, L.-J.; Jiang, S.-J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X.-Z.; Wu, Q.; Ma, J.; Ma, Y.-W.; Hu, Z. Angew. Chem. Int. Ed. 2011, 50, 7132.
[13] Yang, Z.; Yao, Z.; Li, G.-F.; Fang, G.-Y.; Nie, H.-G.; Liu, Z.; Zhou, X.-M.; Chen, X.; Huang, S.-M. ACS Nano 2012, 6, 205.
[14] Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S.-Z. Angew. Chem. Int. Ed. 2012, 51, 11496.
[15] Yang, S.-B.; Zhi, L.-J.; Tang, K.; Feng, X.-L.; Maier, J.; Müllen, K. Adv. Funct. Mater. 2012, 22, 3634.
[16] Yang, D.-S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J.-S. J. Am. Chem. Soc. 2012, 134, 16127.
[17] Yao, Z.; Nie, H.-G.; Yang, Z.; Zhou, X.-M.; Liu, Z.; Huang, S.-M. Chem. Commun. 2012, 48, 1027.
[18] Chen, Y.; Yang, X.-C.; Liu, Y.-J.; Zhao, J.-X.; Cai, Q.-H.; Wang, X.-Z. J. Mol. Graph. Model. 2013, 39, 126.
[19] Zhao, Y.; Yang, L.-J.; Chen, S.; Wang, X.-Z.; Ma, Y.-W.; Wu, Q.; Jiang, Y.-F.; Qian, W.-J.; Hu, Z. J. Am. Chem. Soc. 2013, 135, 1201.
[20] Xie, K.; Qin, X.-T.; Wang, X.-Z.; Wang, Y.-N.; Tao, H.-S.; Wu, Q.; Yang, L.-J.; Hu, Z. Adv. Mater. 2012, 24, 347.
[21] Chen, S.; Bi, J.-Y.; Zhao, Y.; Yang, L.-J.; Zhang, C.; Ma, Y.-W.; Wu, Q.; Wang, X.-Z.; Hu, Z. Adv. Mater. 2012, 24, 5593.
[22] Zhang, L.-P.; Niu, J.-B.; Dai, L.-M.; Xia, Z.-H. Langmuir 2012, 28, 7542.
[23] Liu, F.-Q.; Wang, C.-Y. J. Electrochem. Soc. 2007, 154, B514.
[24] Liang, Y.-Y.; Wang, H.-L.; Zhou, J.-G.; Li, Y.-G.; Wang, J.; Regier, T.; Dai, H.-J. J. Am. Chem. Soc. 2012, 134, 3517.
/
〈 |
|
〉 |