基于尺寸识别和离子交换实现有机染料分离的一例阴离子型MOF
收稿日期: 2014-09-05
网络出版日期: 2014-10-30
基金资助
项目受973计划(Nos.2011CB932504,2012CB821705)和国家自然科学基金(Nos.21221001,21403235)资助.
An Anionic MOF for Separation of Organic Dyes via Cationic-Exchange and Size-Exclusion
Received date: 2014-09-05
Online published: 2014-10-30
Supported by
Project supported by the 973 Program (Nos. 2011CB932504 and 2012CB821705) and the National Natural Science Foundation of China (Nos. 21221001, 21403235).
在溶剂热的条件下, 利用5-氨基间苯二甲酸(H2aip)配体和硝酸铟[In(NO3)3·5H2O]定向构筑了一例二维结构的阴离子型金属有机框架材料, {(Me2NH2)·[In(aip)2]}·xG (1, G=客体分子). 采用X射线单晶衍射、热分析仪(TGA)和X射线粉末衍射(PXRD)等方法对该化合物进行了结构表征. 经过活化后样品1-ht几乎不吸附氮气, 但却能有效地吸附氢气和二氧化碳. 此外, 化合物1还可以通过离子交换和尺寸识别的方式来吸附阳离子亚甲基蓝(MB)染料, 而很难吸附阴离子甲基橙(MO)染料和分子尺寸更大的阳离子罗丹明B (RhB)染料, 实现水相中MB/MO和MB/RhB的选择性分离.
何燕萍 , 谭衍曦 , 张健 . 基于尺寸识别和离子交换实现有机染料分离的一例阴离子型MOF[J]. 化学学报, 2014 , 72(12) : 1228 -1232 . DOI: 10.6023/A14090632
By employing the 5-aminoisophthalic acid (H2aip) ligand to assemble with In3+ ion, a two-dimensional (2D) anionic metal-organic framework (MOF), namely {(Me2NH2)·[In(aip)2]}·xG (1, G=guest), was solvothermally synthesized. In(NO3)3·5H2O (38 mg, 0.1 mmol) and H2aip (45 mg, 0.25 mmol) are added to a mixed solvent of DMF/EtOH/H2O (V:V:V=2:2:1), and then the solution was placed in a small vial. After ultrasonic diffusion for 2 min, it is heated at 120 ℃ for 2 d to obtain yellowish sheet crystals (yield 75% based on H2aip). 1 can be stable under different organic solvent and water. Single crystal diffraction is used to characterize its structure. 1 crystallizes in P-1 space group and presents a 2D sql net. There is weak hydrogen bonding interaction between layers, which effectively prevents the relative motion of the frameworks. The infinite layers further pack into a 3D framework in an AB fashion, thus generating some channels in every direction. Thermogravimetric analysis (TGA) and X-ray powder diffraction (PXRD) are used to measure its thermal stability and purity. The framework can be stable up to 350 ℃ after the guest molecular removed. For gas adsorption studies, 1 was heated at 150 ℃ for 6 h under a vacuum, and then the desolvated solid 1-ht is obtained. Gas sorption measurements indicate that 1-ht can hardly adsorb N2 (0.8 cm3·g-1), but except for H2 (91.2 cm3·g-1) and CO2 (44.9 cm3·g-1), which shows potential applications in CO2/N2 separation at 273 K and 101 kPa. In addition, based on ion-exchange and size-exclusion effect, compound 1 can rapidly adsorb cationic methylene blue (MB) from water in 2 h, but except for anionic methyl orange (MO) and much larger Rhodamine B (RhB). Based on these characters, compound 1 can effectively separate MB over MO and RhB in their mixed water solution. This is a promising application for MOFs in this field. However, only a few MOFs have been investigated to adsorb organic dyes, and the selective separation of mixed dyes in water by MOFs remains rarely explored to date.
Key words: metal-organic framework; structure; organic dye; adsorption; separation
[1] Lackey, L. W.; Mines Jr, R. O.; McCreanor, P. T. J. Hazard. Mater. 2006, 138, 357.
[2] Wang, L.; Yao, Y.-Y.; Sun, L.-J.; Lü, W.-Y.; Chen, W.-X. Acta Chim. Sinica 2013, 71, 1633. (王列, 姚玉元, 孙利杰, 吕汪洋, 陈文兴, 化学学报, 2013, 71, 1633.)
[3] Cao, T.-T.; Luo, G.-F.; Zou, C.-Q.; Zhao, X.-R.; Li, R.-P.; Huang, Y.-P. Acta Chim. Sinica 2011, 69, 1438. (曹婷婷, 罗光富, 邹彩琼, 赵小蓉, 李瑞萍, 黄应平, 化学学报, 2011, 69, 1438.)
[4] Chen, M.-M.; Ma, W.-H.; Li, J.; Huang, Y.-P.; Zhao, J. Environ. Sci. Technol. 2004, 38, 1569.
[5] Ramirez, J.; Vicente, M.; Madeira, L. Appl. Catal. B: Environ. 2010, 98, 10.
[6] Azhar, S. S.; Liew, A. G.; Suhardy, D.; Hafiz, K. F.; Irfan, M. D. Am. J. Appl. Sci. 2005, 2, 1499.
[7] Gonzalez-Olmos, R.; Holzer, F.; Kopinke, F.; Georgi, A. Appl. Catal. A: General 2011, 398, 44.
[8] Martínez, F.; Pariente, M.; Ángel, J.; Melero, J.; Rubalcaba, A. J. Chem. Technol. Biotechnol. 2012, 87, 880.
[9] Su, Z.; Fan, J.; Okamura, T.; Sun, W.-Y. Chin. J. Chem. 2012, 30, 2016.
[10] Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev. 2012, 112, 782.
[11] Zhai, Q.-G.; Lin, Q.; Wu, T.; Wang, L.; Zheng, S.-T.; Bu, X.-H.; Feng, P.-Y. Chem. Mater. 2012, 24, 2624.
[12] Pang, J.; Jiang, F.; Wu, M.; Yuan, D.; Zhou, K.; Qian, J.; Su, K.; Hong, M. Chem. Commun. 2014, 50, 2834.
[13] Zhang, Z.-J.; Gao, W.-Y.; Wojtas, L.; Ma, S.-Q.; Eddaoudi, M.; Zaworotko, M. Angew. Chem., Int. Ed. 2012, 124, 9464.
[14] Zhou, Z.-E.; Xue, C.-Y.; Yang, Q.-Y.; Zhong, C.-L. Acta Chim. Sinica 2009, 67, 477. (周子娥, 薛春瑜, 阳庆元, 仲崇立, 化学学报, 2009, 67, 477.)
[15] Jia, J.-T.; Wang, L.; Zhao, Q.; Sun, F.-X.; Zhu, G.-S. Acta Chim. Sinica 2013, 71, 1492. (贾江涛, 王蕾, 赵晴, 孙福兴, 朱广山, 化学学报, 2013, 71, 1492.)
[16] Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248.
[17] Dang, D.-B.; Wu, P.-Y.; He, C.; Xie, Z.; Duan, C.-Y. J. Am. Chem. Soc. 2010, 132, 14321.
[18] Zhao, L.; Zeng, H.-P. Chin. J. Org. Chem. 2012, 32, 1633. (赵莉, 曾和平, 有机化学, 2012, 32, 1633.)
[19] Lan, Y.-Q.; Jiang, H.-L.; Li, S.-L.; Xu, Q. Adv. Mater. 2011, 23, 5015.
[20] Yan, A.-X.; Yao, S.; Li, Y.-G.; Zhang, Z.-M.; Lu, Y.; Chen, W.-L.; Wang, E.-B. Chem. Eur. J. 2014, 20, 6927.
[21] Dai, M.; Su, X.-R.; Wang, X.; Wu, B.; Ren, Z.-G.; Zhou, X.; Lang, J.-P. Cryst. Growth Des. 2014, 14, 240.
[22] Hou, Y.-L.; Sun, R.-W.; Zhou, X.-P.; Wang, J.-H.; Li, D. Chem. Commun. 2014, 50, 2295.
[23] Qin, J.-S.; Zhang, S.-R.; Du, D.-Y.; Shen, P.; Bao, S.-J.; Lan, Y.-Q.; Su, Z.-M. Chem. Eur. J. 2014, 20, 5625.
[24] Zhu, Y.; Wang, Y.-M.; Zhao, S.-Y.; Liu, P.; Wei, C.; Wu, Y.-L.; Xia, C.-K.; Xie, J.-M. Inorg. Chem. 2014, 53, 7692.
[25] Tan, Y.-X.; He, Y.-P.; Wang, M.; Zhang, J. RSC Adv. 2014, 4, 1480.
[26] Jayaramulu, K.; Reddy, S. K.; Hazra, A.; Balasubramanian, S.; Maji, T. K. Inorg. Chem. 2012, 51, 7103.
[27] Goswami, A.; Bala, S.; Pachfule, P.; Mondal, R. Cryst. Growth Des. 2013, 13, 5487.
[28] Liu, Q.; Jin, L.-N.; Sun, W.-Y. CrystEngComm 2013, 15, 8250.
/
| 〈 |
|
〉 |