综述

ZnO纳米线/棒阵列的水热法制备及应用研究进展

  • 郝锐 ,
  • 邓霄 ,
  • 杨毅彪 ,
  • 陈德勇
展开
  • a. 太原理工大学物理与光电工程学院 太原 030024;
    b. 中国科学院电子学研究所 北京 100190;
    c. 太原理工大学新型传感器与智能控制教育部与山西省重点实验室 太原 030024
郝锐, 男, 1991年出生, 本科毕业于太原理工大学物理与光电工程学院, 自2013年起在太原理工大学微纳系统研究中心从事研究工作, 主要研究方向为微流控系统的设计及氧化锌纳米线阵列的制备, 现为中国科学院电子学研究所硕士研究生;杨毅彪, 男, 1967年出生, 教授.2009年获太原理工大学材料加工工程专业博士学位.主要从事光子晶体、太阳能电池的设计与制备等方面的研究工作;陈德勇, 男, 1967年出生, 研究员.2002年获中国科学院电子学研究所物理电子学博士学位.主要从事MEMS微传感器与微系统、微流控芯片系统等方面的研究工作.

收稿日期: 2014-08-20

  网络出版日期: 2014-11-19

基金资助

项目受国家自然科学基金(Nos.51205273,61340053)、山西省高等学校科技创新基金(No.20120007)、太原理工大学校青年基金(No.2012L034)和山西省研究生优秀创新基金(No.20133028)资助.

Research Progress in Preparation and Applications of ZnO Nanowire/rod Arrays by Hydrothermal Method

  • Hao Rui ,
  • Deng Xiao ,
  • Yang Yibiao ,
  • Chen Deyong
Expand
  • a. College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024;
    b. Institute of Electronics, Chinese Academy of Sciences, Beijing 100190;
    c. Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024

Received date: 2014-08-20

  Online published: 2014-11-19

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51205273, 61340053), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 20120007), the Youth Foundation of Taiyuan University of Technology (No. 2012L034) and the Excellent Innovation Programs for Postgraduate in Shanxi Province (No. 20133028).

摘要

氧化锌(ZnO)纳米线/棒阵列的质量决定了所构建光电器件的性能. 为了制备出比表面积更大、垂直性更好以及无根部融合的高质量ZnO纳米线/棒阵列, 本文概述了近几年两步水热法可控制备ZnO纳米线/棒阵列的研究进展, 分别探讨了种子层、生长液和生长方法对纳米线/棒阵列形貌的影响, 详细分析了氨水、六次甲基四胺和聚乙烯亚胺对于促进纳米线/棒阵列生长的作用机理, 提出了通过微流控技术可控制备ZnO纳米线阵列提高纳米线生长效率的方法. 最后介绍了ZnO纳米线/棒阵列的形貌对于提高染料敏化太阳能电池、纳米发电机、气体传感器和场发射器件性能的重要作用, 并对未来两步水热法制备ZnO纳米线/棒阵列的发展趋势进行了展望.

本文引用格式

郝锐 , 邓霄 , 杨毅彪 , 陈德勇 . ZnO纳米线/棒阵列的水热法制备及应用研究进展[J]. 化学学报, 2014 , 72(12) : 1199 -1208 . DOI: 10.6023/A14080593

Abstract

The quality of zinc oxide (ZnO) nanowire/rod arrays determines the performance of the constructed photoelectric devices. In order to prepare high-quality ZnO nanowire/rod arrays with greater surface to volume ratio, better verticality and separate roots, a brief summary has been made about the research progress of the controllable preparation of ZnO nanowire/rod arrays using two-step hydrothermal method in this paper. Moreover, how the seed layer, growth solution and preparation method influence their morphology has been discussed respectively, and the mechanisms of ammonia, hexamethylenetetramine and polyethyleneimine in promoting the growth of nanowire/rod arrays have been particularly analyzed. At the same time, the method of controllable preparation of ZnO nanowire arrays based on microfluidic technique has been put forward, which can improve the growth efficiency of nanowire arrays. Finally, an introduction has been made about how the morphology of ZnO nanowire/rod arrays plays an important role in improving the performance of dye-sensitized solar cells, nanogenerators, gas sensors and field emission devices, and an outlook of future development trend of two-step hydrothermal method in preparing ZnO nanowire/rod arrays is also provided.

参考文献

[1] Zhou, X.-Y. Ph.D. Dissertation, China University of Petroleum (East China), Qingdao, 2011. (周小岩, 博士论文, 中国石油大学(华东), 青岛, 2011.)
[2] Xiong, J.-F.; Xiao, P.; Wu, Q.; Wang, X.-Z.; Hu, Z. Acta Chim. Sinica 2014, 72, 433. (熊静芳, 肖佩, 吴强, 王喜章, 胡征, 化学学报, 2014, 72, 433.)
[3] Zhang, Y. One-dimensional ZnO Nanomaterials, Science Press, Beijing, 2010, pp. 1~3. (张跃, 一维氧化锌纳米材料, 科学出版社, 北京, 2010, pp. 1~3.)
[4] He, Y.; Wang, J.-A.; Sang, W.-B.; Wu, R.-F.; Yan, L.-L.; Fang, Y.-Y. Acta Chim. Sinica 2005, 63, 1037. (贺英, 王均安, 桑文斌, 吴若峰, 颜莉莉, 方云英, 化学学报, 2005, 63, 1037.)
[5] Lee, Y. M.; Yang, H. W. J. Solid State Chem. 2011, 184, 615.
[6] Qiu, J.-J.; Li, X.-M.; Zhuge, F. W.; Gan, X.-Y.; Gao, X.-D.; He, W.-Z.; Park, S. J.; Kim, H. K.; Hwang, Y. H. Nanotechnology 2010, 21, 195602.
[7] Wang, J.-X.; Sun, X.-W.; Yang, Y.; Huang, H.; Lee, Y. C.; Tan, O.-K.; Vayssieres, L. Nanotechnology 2006, 17, 4995.
[8] Gao, Y.-F.; Nagai, M.; Chang, T. C.; Shyue, J. J. Cryst. Growth Des. 2007, 7, 2467.
[9] Lupan, O.; Pauporté, T.; Viana, B. Adv. Mater. 2010, 22, 3298.
[10] Cho, J. W.; Lee, C. S.; Lee, K. I.; Kim, S. M.; Kim, S. H.; Kim, Y. K. Appl. Phys. Lett. 2012, 101, 083905.
[11] Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P.-D. Nat. Mater. 2005, 4, 455.
[12] Chen, C. H.; Chang, S. J.; Chang, S. P.; Li, M. J.; Chen, I.; Hsueh, T. J.; Hsu, C. L. Chem. Phys. Lett. 2009, 476, 69.
[13] Hsueh, T. J.; Chen, Y. W.; Chang, S. J.; Wang, S. F.; Hsu, C. L.; Lin, Y. R.; Lin, T. S.; Chen, I. Sens. Actuators, B 2007, 125, 498.
[14] Xu, C.-K.; Shin, P.; Cao, L.-L.; Gao, D. J. Phys. Chem. C 2010, 114, 125.
[15] Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P.-D. Nano Lett. 2005, 5, 1231.
[16] Wang, L.-S.; Zhang, X.-Z.; Zhao, S.-Q.; Zhou, G.-Y.; Zhou, Y.-L.; Qi, J.-J. Appl. Phys. Lett. 2005, 86, 024108.
[17] Tien, L. C.; Pearton, S. J.; Norton, D. P.; Ren, F. J. Mater. Sci. 2008, 43, 6925.
[18] Guo, M.; Diao, P.; Cai, S.-M. Acta Chim. Sinica 2003, 61, 1165. (郭敏, 刁鹏, 蔡生民, 化学学报, 2003, 61, 1165.)
[19] Elias, J.; Tena Zaera, R.; Lévy Clément, C. J. Electroanal. Chem. 2008, 621, 171.
[20] Fan, H. J.; Lee, W.; Scholz, R.; Dadgar, A.; Krost, A.; Nielsch, K.; Zacharias, M. Nanotechnology 2005, 16, 913.
[21] Zhang, Y. One-dimensional ZnO Nanomaterials, Science Press, Beijing, 2010, pp. 104~106. (张跃, 一维氧化锌纳米材料, 科学出版社, 北京, 2010, pp. 104~106.)
[22] Vayssieres, L. Adv. Mater. 2003, 15, 464.
[23] Vayssieres, L.; Keis, K.; Lindquist, S. E.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 3350.
[24] Xu, C.-K.; Wu, J.-M.; Desai, U. V.; Gao, D. J. Am. Chem. Soc. 2011, 133, 8122.
[25] Liou, S. C.; Hsiao, C. S.; Chen, S. Y. J. Cryst. Growth 2005, 274, 438.
[26] Tao, Y.-L.; Fu, M.; Zhao, A.-L.; He, D.-W.; Wang, Y.-S. J. Alloys Compd. 2010, 489, 99.
[27] Sun, Y.; George Ndifor Angwafor, N.; Jason Riley, D.; Ashfold, M. N. R. Chem. Phys. Lett. 2006, 431, 352.
[28] Zheng, J.-H.; Zhang, X.-K.; Lu, H.-F. Acta Chim. Sinica 2011, 69, 2434. (郑建华, 张晓凯, 卢慧粉, 化学学报, 2011, 69, 2434.)
[29] Huang, Q.-L.; Fang, L.; Chen, X.; Saleem, M. J. Alloys Compd. 2011, 509, 9456.
[30] Tan, Y.-W.; Xue, X.-Y.; Peng, Q.; Zhao, H.; Wang, T.-H.; Li, Y.-D. Nano Lett. 2007, 7, 3723.
[31] Yu, Y.-X.; Hao, W.-C.; Du, Y.; Wang, C.-Z.; Wang, T.-M. J. Nanosci. Nanotechnol. 2009, 9, 909.
[32] Xu, S.; Wang, Z.-L. Nano Res. 2011, 4, 1013.
[33] Greene, L. E.; Yuhas, B. D.; Law, M.; Zitoun, D.; Yang, P.-D. Inorg. Chem. 2006, 45, 7535.
[34] Qiu, J.-J.; Li, X.-M.; He, W.-Z.; Park, S. J.; Kim, H. K.; Hwang, Y. H.; Lee, J. H.; Kim, Y. D. Nanotechnology 2009, 20, 155603.
[35] Sugunan, A.; Warad, H. C.; Boman, M.; Dutta, J. J. Sol-Gel Sci. Technol. 2006, 39, 49.
[36] Chen, L.-L.; Li, X.-D.; Qu, L.-L.; Gao, C.-T.; Wang, Y.-Q.; Teng, F.; Zhang, Z.-X.; Pan, X.-J.; Xie, E.-Q. J. Alloys Compd. 2014, 586, 766.
[37] Zhu, S.-B.; Chen, X.-N.; Zuo, F.-B.; Jiang, M.; Zhou, Z.-W.; Hui, D. J. Solid State Chem. 2013, 197, 69.
[38] Zhou, Y.; Wu, W.-B.; Hu, G.-D.; Wu, H.-T.; Cui, S.-G. Mater. Res. Bull. 2008, 43, 2113.
[39] Yin, X.-T.; Que, W.-X.; Fei, D.; Xie, H.-X.; He, Z.-L.; Wang, G.-F. Electrochim. Acta 2013, 89, 561.
[40] Xu, C.-K.; Gao, D. J. Phys. Chem. C 2012, 116, 7236.
[41] Desai, U. V.; Xu, C.-K.; Wu, J.-M.; Gao, D. Nanotechnology 2012, 23, 205401.
[42] Xu, C.; Wang, X.-D.; Wang, Z.-L. J. Am. Chem. Soc. 2009, 131, 5866.
[43] Hsu, Y. F.; Xi, Y. Y.; Djuriši?, A. B.; Chan, W. K. Appl. Phys. Lett. 2008, 92, 133507.
[44] Gao, H.-M.; Fang, G.-J.; Wang, M.-J.; Liu, N.-S.; Yuan, L.-Y.; Li, C.; Ai, L.; Zhang, J.; Zhou, C.-H.; Wu, S.-J. Mater. Res. Bull. 2008, 43, 3345.
[45] Deng, J.-P.; Wang, M.-Q.; Song, X.-H.; Liu, J. J. Alloys Compd. 2014, 588, 399.
[46] Wang, L. S.; Tsan, D.; Stoeber, B.; Walus, K. Adv. Mater. 2012, 24, 3999.
[47] Chen, L. Y.; Yin, Y. T. Cryst. Growth Des. 2012, 12, 1055.
[48] Hu, J.; Deng, X.; Sang, S.-B.; Li, P.-W.; Li, G.; Zhang, W.-D. Acta Phys. Sin. 2014, 63, 207102-1. (胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋, 物理学报, 2014, 63, 207102-1.)
[49] Gao, C.-T.; Li, X.-D.; Wang, Y.-Q.; Chen, L.-L.; Pan, X.-J.; Zhang, Z.-X.; Xie, E.-Q. J. Power Sources 2013, 239, 458.
[50] Hochbaum, A. I.; Yang, P.-D. Chem. Rev. 2009, 110, 527.
[51] Pradhan, B.; Batabyal, S. K.; Pal, A. J. Sol. Energy Mater. Sol. Cells 2007, 91, 769.
[52] Baxter, J. B.; Aydil, E. S. Appl. Phys. Lett. 2005, 86, 053114.
[53] Qin, Z.; Liao, Q.-L.; Huang, Y.-H.; Tang, L.-D.; Zhang, X.-H.; Zhang, Y. Mater. Chem. Phys. 2010, 123, 811.
[54] Wang, Z.-L.; Song, J.-H. Science 2006, 312, 242.
[55] Zhu, G.; Yang, R.-S.; Wang, S.-H.; Wang, Z.-L. Nano Lett. 2010, 10, 3151.
[56] Lu, M. P.; Song, J.-H.; Lu, M. Y.; Chen, M. T.; Gao, Y.-F.; Chen, L. J.; Wang, Z.-L. Nano Lett. 2009, 9, 1223.
[57] Riaz, M.; Song, J.-h.; Nur, O.; Wang, Z.-L.; Willander, M. Adv. Funct. Mater. 2011, 21, 628.
[58] Liao, L.; Lu, H.-B.; Li, J.-C.; He, H.; Wang, D.-F.; Fu, D.-J.; Liu, C.; Zhang, W.-F. J. Phys. Chem. C 2007, 111, 1900.
[59] Chang, C. M.; Hon, M. H.; Leu, I. C. Sens. Actuators, B 2010, 151, 15.
[60] Chang, C. J.; Hung, S. T.; Lin, C. K.; Chen, C. Y.; Kuo, E. H. Thin Solid Films 2010, 519, 1693.
[61] Liu, F. T.; Gao, S. F.; Pei, S. K.; Tseng, S. C.; Liu, C. H. J. J. Taiwan Inst. Chem. Eng. 2009, 40, 528.
[62] Liu, J.-P.; Xu, C.-X.; Zhu, G.-P.; Li, X.; Cui, Y.-P.; Yang, Y.; Sun, X.-W. J. Phys. D: Appl. Phys. 2007, 40, 1906.
[63] Wang, X.-D.; Zhou, J.; Lao, C.-S.; Song, J.-H.; Xu, N.-S.; Wang, Z.-L. Adv. Mater. 2007, 19, 1627.
[64] Wang, W.-Z.; Zeng, B.-Q.; Yang, J.; Poudel, B.; Huang, J.; Naughton, M. J.; Ren, Z. Adv. Mater. 2006, 18, 3275.
[65] Liu, J.; She, J.-C.; Deng, S.-Z.; Chen, J.; Xu, N. S. J. Phys. Chem. C 2008, 112, 11685. Hsiao, C. H.; Huang, C. S.; Young, S. J.; Chang, S. J.; Guo, J. J.; Liu, C. W.; Yang, T. Y. IEEE Trans. Electron Devices 2013, 60, 1905.

文章导航

/