研究论文

新型羧甲基壳聚糖水凝胶流变性能,药物释放及细胞相容性研究

  • 刘水莲 ,
  • 周洋 ,
  • 陈福花 ,
  • 朱寿进 ,
  • 宿烽 ,
  • 李速明
展开
  • a 青岛科技大学 高性能聚合物研究院 青岛 266042;
    b 青岛中化新材料实验室 青岛 266042;
    c 蒙彼利埃二大 欧洲薄膜研究院 法国 蒙彼利埃 34095

收稿日期: 2014-10-14

  网络出版日期: 2014-12-09

基金资助

项目受国家自然科学基金(Nos. 50873030, 51073041)资助.

Rheological Properties, Drug Release Behavior and Cytocompatibility of Novel Hydrogels Prepared from Carboxymethyl Chitosan

  • Liu Shuilian ,
  • Zhou Yang ,
  • Chen Fuhua ,
  • Zhu Shoujin ,
  • Su Feng ,
  • Li Suming
Expand
  • a Institute of High Performance Polymer, Qingdao University of Science and Technology, Qingdao 266042;
    b Qingdao Sinochem New Materials Laboratory, Qingdao 266042;
    c Institut Europeen des Membranes, UMR CNRS 5635, Universite Montpellier II, Montpellier 34095, France

Received date: 2014-10-14

  Online published: 2014-12-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 50873030, 51073041).

摘要

羧甲基壳聚糖含有丰富的羧基和氨基, 通过1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)共催化交联羧甲基壳聚糖形成新型水凝胶. 调节EDC/NHS用量, 制备不同交联度的羧甲基壳聚糖水凝胶(CMCS hydrogels). 研究水凝胶的流变行为, 结果表明, 高交联度的水凝胶具有较好的弹性形变能力, 较高的储存模量, 这是因为随着交联度的升高, 羧甲基壳聚糖水凝胶化学交联网络结构趋于完善. 以胸腺五肽(TP-5)为模型药物, 初步评价CMCS水凝胶药物释放行为, 结果表明水凝胶交联度越高, 胸腺五肽释放速度越慢. MTT法初步评价了水凝胶细胞毒性, 细胞形态和细胞相对增值速率, 结果表明水凝胶毒性很低. 由此可见, 水凝胶具有良好的生物相容性, 在药物缓释和组织工程领域具有广阔的应用前景.

本文引用格式

刘水莲 , 周洋 , 陈福花 , 朱寿进 , 宿烽 , 李速明 . 新型羧甲基壳聚糖水凝胶流变性能,药物释放及细胞相容性研究[J]. 化学学报, 2015 , 73(1) : 47 -52 . DOI: 10.6023/A14100710

Abstract

Hydrogels were prepared by crosslinking carboxymethyl chitosan (CMCS) using 1-ethyl-3-(3-dimethylamino- propyl)-1-carbodiimide/N-hydroxysuccinimide (EDC/NHS) as catalyst under mild conditions. The resulting hydrogels present different crosslinking density, depending on the amount of EDC/NHS. Rheological studies show that hydrogels with high crosslinking density present higher storage modulus than those with low crosslinking density. A model drug, thymopentin (TP-5) is loaded in CMCS hydrogels. Parabolic release profiles are obtained in all cases. High crosslinking density hydrogels present slower release rate as compared to low crosslinking density ones because the former exhibits more compact structure. Preliminary studies were performed to evaluate the cytotoxicity of CMCS hydrogels by using MTT assay. Both cell morphology and RGR results show that the CMCS hydrogels present very low toxicity. Therefore, CMCS hydrogels are promising for applications in the fields of tissue engineering and controlled drug delivery.

参考文献

[1] Molina, I.; Li, S. M.; Martinez, M. B.; Vert, M. Biomaterials 2001, 22, 363.
[2] Fioretta, E. S.; Fledderus, J. O.; Burakowska-Meise, E. A.; Baaijens, F. P. T.; Verhaar, M. C.; Bouten, C. V. C. Macromol. Biosci. 2012, 12, 577.
[3] Chen, S. H.; Tsao, C. T.; Chang, C. H.; Lai, Y. T.; Wu, M. F.; Chuang, C. N.; Chou, H. C.; Wang, C. K.; Hsieh, K. H. Mater. Sci. Eng., C 2013, 33, 2584.
[4] Valmikinathan, C. M.; Mukhatyar, V. J.; Jain, A.; Karumbaiah, L.; Dasari, M.; Bellamkonda, R. V. Soft Matter 2012, 8, 1964.
[5] Chen, S. C.; Wu, Y. C.; Mi, F. L.; Lin, Y. H.; Yu, L. C.; Sung, H. W. J. Controlled Release 2004, 96, 285.
[6] Mourya, V. K.; Inamdar, N. N.; Tiwari, A. Adv. Mater. Lett. 2010, 1, 11.
[7] Yin, X.; Zhou, G.; Wang, C. Y.; Liu, Z. W. J. Wuhan Polytechnic Univ. 2008, 27, 18. (殷雪, 周岿, 王春颖, 刘章武, 武汉工业学院学报, 2008, 27, 18.)
[8] Huang, P. M.S. Thesis, J. Ocean Univ. China, Qingdao, 2009. (黄攀, 硕士论文, 中国海洋大学, 青岛, 2009.)
[9] Chen, L.; Tian, Z.; Du, Y. Biomaterials 2004, 25, 3725.
[10] Wang, G.; Lu, G. Y.; Ao, Q.; Gong, Y. D.; Zhang, X. F. Biotechnol. Lett. 2010, 32, 59.
[11] Hoffman, A. S. Adv. Drug Delivery Rev. 2002, 54, 3.
[12] Hu, Y. F.; Liu, Y. F.; Qi, X.; Liu, P.; Fan, Z. Y.; Li, S. M. Polym. Int. 2012, 61, 74.
[13] Malinen, M. M.; Kanninen, L. K.; Corlu, A.; Isoniemi, H. M.; Lou, Y. R.; Yliperttula, M. L.; Urtti, A. O. Biomaterials 2014, 35, 5110.
[14] Mishra, D.; Bhunia, B.; Banerjee, I.; Datta, P.; Dhara, S.; Maiti, T. K. Mater. Sci. Eng., C 2011, 31, 1295.
[15] Hennink, W. E.; Van Nostrum, C. F. Adv. Drug Delivery Rev. 2002, 54, 13.
[16] Cheung, H. K.; Han, T. T. Y.; Marecak, D. M.; Marecak, D. M.; Watkins, J. F.; Amsden, B. G.; Flynn, L. E. Biomaterials 2014, 35, 1914.
[17] Vaghani, S. S.; Patel, M. M.; Satish, C. S. Carbohydr. Res. 2012, 347, 76.
[18] Drury, J. L.; Mooney, D. J. Biomaterials 2003, 24, 4337.
[19] Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biomacromolecules 2011, 12, 1387.
[20] Guan, J.; Xu, H. X.; Huang, Y. F.; Tian, K.; Shao, Z. Z.; Chen, X. Acta Chim. Sinica 2010, 68, 89. (管娟, 许惠心, 黄郁芳, 田琨, 邵正中, 陈新, 化学学报, 2010, 68, 89.)
[21] Tseng, H. J.; Tsou, T. L.; Wang, H. J.; Hsu, S. H. J. Tissue Eng. Regen. Med. 2013, 7, 20.
[22] Lin, Y. W.; Li, L. F.; Li, G. W. Acta Chim. Sinica 2012, 70, 2246. (林友文, 李立凡, 李光文, 化学学报, 2012, 70, 2246. )
[23] Zhang, Y. L.; Tao, L.; Li, S. X.; Wei, Y. Biomacromolecules 2011, 12, 2894.
[24] Weng, L.; Romanov, A.; Rooney, J.; Chen, W. Biomaterials 2008, 29, 3905.
[25] Fan, L. H.; Sun, Y.; Xie, W. G.; Zheng, H.; Liu, S. H. J. Biomater. Sci., Polym. Ed. 2012, 23, 2119.
[26] Li, X. Y.; Kong, X. Y.; Zhang, Z. L.; Nan, K. H.; Li, L. L.; Wang, X. H.; Chen, H. Int. J. Biol. Macromol. 2012, 50, 1299.
[27] Zhu, S. J.; Liu, F. Q.; Wang, J. Z.; Su, F.; Li, S. M. Chem. J. Chin. Univ. 2014, 35, 863. (朱寿进, 刘法谦, 王璟朝, 宿烽, 李速明, 高等学校化学学报, 2014, 35, 863.)
[28] ArguKelles-Monal, W.; Goycoolea, F. M.; Peniche, C.; Higuera-ciapara, I. Polym. Gels Networks 1998, 6, 429.
[29] Zhang, Y.; Wu, X.; Han, Y.; Mo, F.; Duan, Y. R.; Li, S. M. Int. J. Pharm. 2010, 386, 15.
[30] Martel-Estrada, S. A.; Olivas-Armendariz, I.; Martinez-Perez, C. A.; Hernandez, T.; Acosta-Gomez, E. I.; Chacon-Nava, J. G.; Jimenez-Vega, F.; Garcia-Casillas, P. E. J. Mater. Sci.-Mater. Med. 2012, 23, 2893.

文章导航

/