可溶液加工的有机-无机杂化钙钛矿:超越光伏应用的“梦幻”材料
收稿日期: 2014-10-14
网络出版日期: 2014-12-08
基金资助
项目受江苏省自然科学基金(Nos. BK20131413, BK20140952)、国家科技支撑计划(No. 2011AA050520)、国家重大研究计划(No. 2015CB932200)、江苏特聘教授计划、江苏高校优势学科建设工程二期项目、浙江大学硅材料国家重点实验室研究基金、国家自然科学基金(Nos. 51172203, 61405091, 11474164)和省部级课题(Nos. R4110189, 2013C31057)资助.
Solution-Processed Organic-Inorganic Hybrid Perovskites: A Class of Dream Materials Beyond Photovoltaic Applications
Received date: 2014-10-14
Online published: 2014-12-08
Supported by
Project supported by the Jiangsu Natural Science Foundation (Nos. BK20131413, BK20140952), the National High Technology Research and Development Program of China (No. 2011AA050520), the National Basic Research Program of China (No. 2015CB932200), the Jiangsu Specially-Appointed Professor program, the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Research Program of Silicon Materials National Laboratory of Zhejiang University, the National Natural Science Foundation of China (Nos. 51172203, 61405091, 11474164), the Natural Science Funds for Distinguished Young Scholar of Zhejiang Province (No. R4110189), and the Public Welfare Project of Zhejiang Province (No. 2013C31057).
有机-无机杂化钙钛矿材料是可通过溶液工艺低温制备得到的直接带隙半导体晶体薄膜. 在众多可溶液加工的半导体材料中, 有机-无机杂化钙钛矿薄膜是为数不多的低缺陷密度、双极子传输性能优异的晶体薄膜, 同时兼具宽光谱吸收和长载流子扩散距离等特性, 是平面异质结太阳能电池的理想选择. 另外, 作为低缺陷密度的直接带隙半导体晶体材料, 杂化钙钛矿薄膜具有优异的发光特性. 其发光波长可通过能带工程(在分子水平上改变其组分)进行调节, 因此有望在发光二极管和激光等光电器件中得到新应用. 总结了钙钛矿材料的优异特性和目前应用研究的进展, 并对其未来发展做了展望.
王娜娜 , 司俊杰 , 金一政 , 王建浦 , 黄维 . 可溶液加工的有机-无机杂化钙钛矿:超越光伏应用的“梦幻”材料[J]. 化学学报, 2015 , 73(3) : 171 -178 . DOI: 10.6023/A14100711
Organic-inorganic hybrid perovskite is a class of direct-bandgap semiconductors that can be processed as thin films from solutions by low-temperature methods. Among various solution-processable semiconductor materials, the hybrid perovskites exhibit unique combination of low bulk-trap densities, remarkable ambipolar transport properties, good broadband absorption characteristics and long charge carrier diffusion lengths, making them ideal for photovoltaic applications. Furthermore, as direct bandgap semiconductors with low bulk trap densities, the hybrid perovskite films possess remarkable luminescent properties. The bandgap of the hybrid perovskites can be tuned by crystal engineering, i.e. tuning the composition at molecular levels. These intriguing properties indicate that the hybrid perovskites may also find applications in light-emitting diodes and lasing. This paper reviews the unique properties and current research progresses of this class of dream material and provides our perspective of future directions.
Key words: hybrid; perovskite; solution-processed; light-emitting diodes; lasing
[1] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.
[2] Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. Nanoscale 2011, 3, 408.
[3] Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485, 486.
[4] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.
[5] Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Nat. Photonics 2014, 8, 128.
[6] Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
[7] Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, 316.
[8] Liu, D.; Kelly, T. L. Nat. Photonics 2014, 8, 133.
[9] Lee, J.-W.; Seol, D.-J.; Cho, A.-N.; Park, N.-G. Adv. Mater. 2014, 26, 4991.
[10] Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542.
[11] Yang, Z. S.; Yang, L. G.; Wu, G.; Wang, M.; Chen, H. Z. Acta Chim. Sinica 2011, 69, 627. (杨志胜, 杨立功, 吴刚, 汪茫, 陈红征, 化学学报, 2011, 69, 627.)
[12] Yang, Z. S.; Yang, L. G.; Wu, G.; Wang, M.; Tang, B. Z.; Chen, H. Z. Acta Chim. Sinica 2008, 66, 1611. (杨志胜, 杨立功, 吴刚, 汪茫, 唐本忠, 陈红征, 化学学报, 2008, 66, 1611.)
[13] Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897.
[14] Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2014, 136, 622.
[15] Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Nat. Mater. 2014, 13, 476.
[16] Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Adv. Mater. 2014, 26, 1584.
[17] Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341.
[18] Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344.
[19] Bai, S.; Wu, Z.; Wu, X.; Jin, Y.; Zhao, N.; Chen, Z.; Mei, Q.; Wang, X.; Ye, Z.; Song, T.; Liu, R.; Lee, S.; Sun, B. Nano Res. 2014, 7, 1749.
[20] Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. ACS Nano 2014, 8, 9815.
[21] Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N. Solid State Commun. 2003, 127, 619.
[22] Brivio, F.; Walker, A. B.; Walsh, A. APL Mater. 2013, 1, 042111.
[23] Cai, B.; Xing, Y.; Yang, Z.; Zhang, W.-H.; Qiu, J. Energy Environ. Sci. 2013, 6, 1480.
[24] Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Nat. Commun. 2013, 4, 1.
[25] Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H. J. Phys. Chem. Lett. 2014, 5, 1421.
[26] Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764.
[27] Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982.
[28] Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1994, 65, 676.
[29] Hattori, T.; Taira, T.; Era, M.; Tsutsui, T.; Saito, S. Chem. Phys. Lett. 1996, 254, 103.
[30] Chondroudis, K.; Mitzi, D. B. Chem. Mater. 1999, 11, 3028.
[31] Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Nat. Nanotechnol. 2014, 9, 687.
[32] Xia, R.; Heliotis, G.; Bradley, D. D. C. Appl. Phys. Lett. 2003, 82, 3599.
[33] Namdas, E. B.; Tong, M.; Ledochowitsch, P.; Mednick, S. R.; Yuen, J. D.; Moses, D.; Heeger, A. J. Adv. Mater. 2009, 21, 799.
[34] Dang, C.; Lee, J.; Breen, C.; Steckel, J. S.; Coe-Sullivan, S.; Nurmikko, A. Nat. Nanotechnol. 2012, 7, 335.
/
〈 |
|
〉 |