综述

高效率钙钛矿型太阳能电池的化学稳定性及其研究进展

  • 郭旭东 ,
  • 牛广达 ,
  • 王立铎
展开
  • 清华大学化学系 有机光电子与分子工程教育部重点实验室 北京 100084

收稿日期: 2014-10-04

  网络出版日期: 2014-12-23

基金资助

项目受国家自然科学基金(No. 51273104)资助.

Chemical Stability Issue and Its Research Process of Perovskite Solar Cells with High Efficiency

  • Guo Xudong ,
  • Niu Guangda ,
  • Wang Liduo
Expand
  • Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084

Received date: 2014-10-04

  Online published: 2014-12-23

Supported by

Project supported by the National Natural Science Foundation of China (No. 51273104).

摘要

近几年来, 钙钛矿太阳能电池器件光电转换效率的最高纪录不断被刷新, 但是关于钙钛矿太阳能电池稳定性的研究报道比较缺乏. 钙钛矿太阳能电池稳定性问题已经成为制约钙钛矿太阳能电池继续发展的瓶颈. 简要讨论了水氧气氛、温度变化、湿法制备、紫外光照等不同敏感环境条件下钙钛矿太阳能电池的化学稳定性问题, 进而对一定环境条件下钙钛矿太阳能电池的化学稳定性及其调控的研究现状进行了综述, 旨在更好地理解钙钛矿太阳能电池稳定性的基础理论问题, 为实现钙钛矿太阳能电池稳定性的调控提供基本依据.

本文引用格式

郭旭东 , 牛广达 , 王立铎 . 高效率钙钛矿型太阳能电池的化学稳定性及其研究进展[J]. 化学学报, 2015 , 73(3) : 211 -218 . DOI: 10.6023/A14100687

Abstract

Perovskite solar cells have recently achieved photo-electric conversion efficiency over 19% showing a promising future for a cost-competitive potovoltaic technology. However, the study of perovskite solar cells' stability didn't catch up with the step of efficiency's process, which is the key issue for commercial application of perovskite solar cells. This review discussed the basic issues of the perovskite solar cells' stability under different circumstances, such as oxygen and moisture, UV light, solution process (solvents, solutes, additives), and temperature etc. and summarized how to control the perovskite solar cells' stability under the conditions above. The purpose is to provide a better understanding about perovskite solar cells'stability and the methods to increase the stability of perovskite solar cells under different circumstances.

参考文献

[1] Park, N. G. J. Phys. Chem. Lett. 2013, 4, 2423.
[2] Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344.
[3] Grätzel, M. Nat. Mater. 2014, 13, 838.
[4] Science 2013, 342, 1438.
[5] http: //www. nrel. gov/ncpv/images/efficiency_chart. jpg.
[6] Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542.
[7] Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, 316.
[8] Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
[9] Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764.
[10] Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y. J. Mater. Chem. A 2014, 2, 705.
[11] Ma, B.; Gao, R.; Wang, L.; Luo, F.; Zhan, C.; Li, J.; Qiu, Y. J. Photochem. Photobiol. A: Chem. 2009, 202, 33.
[12] Li, W.; Li, J.; Wang, L.; Niu, G.; Gao, R.; Qiu, Y. J. Mater. Chem. A 2013, 1, 11735.
[13] Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584.
[14] Cheng, Z.; Lin, J. CrystEngComm 2010, 12, 2646.
[15] Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Grätzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628.
[16] Mitzi, D. B. Prog. Inorg. Chem. 2007, 48, 1.
[17] Amat, A.; Mosconi, E.; Ronca, E.; Quarti, C.; Umari, P.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. Nano Lett. 2014, 14, 3608.
[18] Koh, T. M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. J. Phys. Chem. C 2014, 118, 16548.
[19] Yang, Z.-S.; Yang, L.-G.; Wu, G.; Wang, M.; Chen, H.-Z. Acta Chim. Sinica 2011, 69, 627. (杨志胜, 杨立功, 吴刚, 汪茫, 陈红征, 化学学报, 2011, 69, 627.)
[20] Im, J. H.; Chung, J.; Kim, S. J.; Park, N. G. Nanoscale Res. Lett. 2012, 7, 353.
[21] Lee, J. W.; Seol, D. J.; Cho, A. N.; Park, N. G. Adv. Mater. 2014, 26, 4991.
[22] Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. Angew. Chem., Int. Ed. 2014, 53, 3151.
[23] Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982.
[24] Pang, S.; Hu, H.; Zhang, J.; Lv, S.; Yu, Y.; Wei, F.; Qin, T.; Xu, H.; Liu, Z.; Cui, G. Chem. Mater. 2014, 26, 1485.
[25] Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019.
[26] Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T. J. Phys. Chem. Lett. 2014, 5, 1004.
[27] Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P.; Kanatzidis, M. G. Nat. Photon. 2014, 8, 489.
[28] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.
[29] Suarez, B.; Gonzalez-Pedro, V.; Ripolles, T. S.; Sánchez, R. S.; Otero, L. A.; Mora-Sero, I. J. Phys. Chem. Lett. 2014, 5, 1628.
[30] Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G. Chem. Mater. 2013, 25, 4613.
[31] Edri, E.; Kirmayer, S.; Kulbak, M.; Hodes, G.; Cahen, D. J. Phys. Chem. Lett. 2014, 5, 429.
[32] Edri, E.; Kirmayer, S.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2013, 4, 897.
[33] Nagane, S.; Bansode, U.; Game, O.; Chhatre, S.; Ogale, S. Chem. Commun. 2014, 50, 9741.
[34] Swainson, I.; Tucker, M.; Wilson, D.; Winkler, B.; Milman, V. Chem. Mater. 2007, 19, 2401.
[35] Dualeh, A.; Gao, P.; Seok, S. I.; Nazeeruddin, M. K.; Grätzel, M. Chem. Mater. 2014, 26, 6160.
[36] Pisoni, A.; Jacimovic, J.; Bariši?, O. S.; Spina, M.; Gaál, R.; Forró, L.; Horváth, E. J. Phys. Chem. Lett. 2014, 5, 2488.
[37] Fang, Y.; Wang, X.; Wang, Q.; Huang, J.; Wu, T. Phys. Status Solidi A 2014, 211, 2809.
[38] Liu, J.; Wu, Y.; Qin, C.; Yang, X.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W.; Chen, W.; Han, L. Energy Environ. Sci. 2014, 7, 2963.
[39] Shi, J.; Dong, J.; Lv, S.; Xu, Y.; Zhu, L.; Xiao, J.; Xu, X.; Wu, H.; Li, D.; Luo, Y.; Meng, Q. Appl. Phys. Lett. 2014, 104, 063901.
[40] Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Han, H. Science 2014, 345, 295.
[41] Li, W.; Dong, H.; Wang, L.; Li, N.; Guo, X.; Li, J.; Qiu, Y. J. Mater. Chem. A 2014, 2, 13587.
[42] Zhang, H.; Shi, Y.; Yan, F.; Wang, L.; Wang, K.; Xing, Y.; Dong, Q.; Ma, T. Chem. Commun. 2014, 50, 5020.
[43] Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li G.; Yang, Y. J. Am. Chem. Soc. 2013, 136, 622.
[44] Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.-W.; Wojciechowski, K.; Zhang, W. J. Phys. Chem. Lett. 2014, 5, 1511.
[45] Dualeh, A.; Moehl, T.; Tétreault, N.; Teuscher, J.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. ACS Nano 2013, 8, 362.
[46] Zhao, Y.; Zhu, K. Chem. Commun. 2014, 50, 1605.
[47] Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C 2000, 1, 1.
[48] Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Nat. Commun. 2013, 4, 2885.
[49] Pathak, S. K.; Abate, A.; Leijtens, T.; Hollman, D. J.; Teuscher, J.; Pazos, L.; Docampo, P.; Steiner, U.; Snaith, H. J. Adv. Energy Mater. 2014, 4, 1301667.
[50] Schwanitz, K.; Weiler, U.; Hunger, R.; Mayer, T.; Jaegermann, W. J. Phys. Chem. C 2007, 111, 849.
[51] Ito, S.; Tanaka, S.; Manabe, K.; Nishino, H. J. Phys. Chem. C 2014, 118, 16995.
[52] Chander, N.; Khan, A.; Chandrasekhar, P.; Thouti, E.; Swami, S. K.; Dutta, V.; Komarala, V. K. Appl. Phys. Lett. 2014, 105, 033904.
[53] Strange, P.; Svane, A.; Temmerman, W.; Szotek, Z.; Winter, H. Nature 1999, 399, 756.
[54] Wei, J.; Zhao, Q.; Li, H.; Shi, C.-L.; Tian, J.-J.; Cao, G.-Z.; Yu, D.-P. Sci. Sin. Tech. 2014, 44, 801. (魏静, 赵清, 李恒, 施成龙, 田建军, 曹国忠, 俞大鹏, 中国科学技术科学, 2014, 44, 801.)
[55] Zhang, W.-H.; Peng, X.-C.; Feng, X.-D. Electronic Components Mater. 2014, 33, 7. (张玮皓, 彭晓晨, 冯晓东, 电子元件与材料, 2014, 33, 7.)

文章导航

/