研究论文

B掺杂SWCNT表面吸附DNA碱基的理论研究

  • 李来才 ,
  • 张明 ,
  • 毛双 ,
  • 杨春 ,
  • 田安民
展开
  • a 四川师范大学化学与材料科学学院 成都 610066;
    b 四川师范大学虚拟现实与可视化计算四川省重点实验室 成都 610066;
    c 四川大学化学学院 成都 610064

收稿日期: 2014-10-21

  网络出版日期: 2015-01-12

基金资助

项目受四川省科技厅基金(No. 2014JY0099)和四川省教育厅重点基金(Nos. 13ZA0150, 14ZB0028)资助.

Theoretical Investigation on the Adsorption of DNA Bases on B-doped SWCNT Surface

  • Li Laicai ,
  • Zhang Ming ,
  • Mao Shuang ,
  • Yang Chun ,
  • Tian Anmin
Expand
  • a College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610066;
    b Visual Computing and Virtual Reality Key Laboratory of Sichuan Province, Sichuan Normal University, Chengdu 610066;
    c Department of Chemistry, Sichuan University, Chengdu 610064

Received date: 2014-10-21

  Online published: 2015-01-12

Supported by

Project supported by the Foundation of Sichuan Province (No. 2014JY0099) and Department of Education of Sichuan Province(Nos. 13ZA0150, 14ZB0028).

摘要

采用基于密度泛函理论的LDA (PWC)方法对比研究了纯单壁纳米碳管(SWCNT)和B掺杂单壁碳纳米管(B doped SWCNT)表面吸附DNA碱基(腺嘌呤)A、(胸腺嘧啶)T、(胞嘧啶)C、(鸟嘌呤)G的吸附特性和本质, 计算研究了最佳吸附位点, 吸附能, 以及稳定吸附模型的电子结构. 结果表明掺杂元素B的引入不会造成SWCNT的结构畸变, 可以局部影响碳纳米管的电子结构, 有效增强SWCNT与DNA碱基之间的电子相互作用, DNA碱基以化学吸附的形式修饰在B掺杂SWCNT的表面. 研究结果预示B掺杂SWCNT表面修饰DNA碱基有潜力成为DNA生物传感器生物识别界面的主要成分.

本文引用格式

李来才 , 张明 , 毛双 , 杨春 , 田安民 . B掺杂SWCNT表面吸附DNA碱基的理论研究[J]. 化学学报, 2015 , 73(2) : 143 -150 . DOI: 10.6023/A14100729

Abstract

A comparative study was conducted to assess the adsorption and characteristics of the four types of DNA bases, A, T, C, and G, on pristine and B-doped SWCNTs by density functional theory calculations with LDA (PWC) method. The configurations of the best sites, the adsorption energies in the best sites and the electronic structures of stable adsorption models, including DOS, PDOS, electron density map, mulliken charge properties of DNA bases and B atom before and after adsorption on pristine and B-doped SWCNTs have been investigated. And the frontier orbital energy gap and charge transfer of DNA bases adsorption on pristine and B-doped SWCNTs have been also investigated. The results indicated that the best adsorption site of DNA base adsorption on pristine and B-doped SWCNTs was on the top of carbon and B atoms. The bases A, G were adsorbed on pure SWCNT by weak interaction, the bases T, C were adsorbed on pure SWCNT by strong chemical interaction. The bases A, T, C, G were adsorbed on B-doped SWCNT by chemical interaction. After B doping, the structure of the SWCNT was not distorted, however, the local electronic structure was modified. The frontier orbital energy gap of SWCNT could be effectively reduced by B doping. Moreover, the electronic reactivity with the DNA bases of SWCNT were enhanced by B doping. The DNA bases on the surface of B-doped SWCNT could be modified by Chemical adsorption. This method for the modification of DNA bases on B-doped SWCNT surface has great potential for the construction of DNA biosensors of biorecognition interfaces.

参考文献

[1] Wang, J. Biosens. Bioelectron. 2006, 10, 1887.
[2] Gooding, J. J. Electroanalysis 2002, 17, 1149.
[3] Zhang, J.-J.; Dai, P.-Q.; Li, C.; Li, N.-W.; Cheng, G.-F.; He, P.-G.; Fang, Y.-Z. Acta Chim. Sinica 2014, 72, 1029. (张佳佳, 代佩卿, 李超, 李南忘, 程圭芳, 何品刚, 方禹之, 化学学报, 2014, 72, 1029.)
[4] Tu, X.; Manohar, S.; Jagota, A.; Zheng, M. Nature 2009, 460, 250.
[5] Dong, X.-Y.; Zhao, W.-W.; Sun, G.-B.; Xu, J.-J.; Chen, H.-Y. Acta Chim. Sinica 2012, 70, 1457. (董晓娅, 赵伟伟, 孙国宝, 徐静娟, 陈洪渊, 化学学报, 2012, 70, 1457.)
[6] Vaidya, A. A. Langmuir 2004, 20, 11100.
[7] Meric, B.; Kerman, K.; Ozkan, D.; Kara, P. Electroanalysis 2002, 18. 1245.
[8] Kerman, K.; Morita, Y.; Takamura, Y.; Ozsoz, M.; Tamiya, E. Electroanalysis 2004, 16, 1667.
[9] Gooding, J. J. Electroanalysis 2002, 14, 1149.
[10] Watterson, J.; Piunno, P. A. E.; Krull, U. J. Anal. Chim. Acta 2002, 469, 115.
[11] Staii, C.; Johnson, A. T.; Chen, M.; Gelperin, A. Nano Lett. 2005, 5, 1774.
[12] Wang, J. Anal. Chim. Acta 2003, 500, 247.
[13] Wang, J.; Xu, D. K.; Erdem, A.; Polsky, R.; Salazar, M. A. Talanta 2002, 56, 931.
[14] Chen, C. L.; Yang, C. F.; Agarwal, V.; Kim, T.; Sonkusale, S.; Busnaina, A.; Chen, M.; Dokmeci, M. R. Nanotechnology 2010, 21, 095504.
[15] Khabashesku, V. N.; Margrave, J. L.; Barrera, E. V. Diamond Relat. Mater 2004, 14, 859.
[16] Martin, W.; Zhu, W. S.; Krilov, G. J. Phys. Chem. B 2008, 112, 16076.
[17] Roxbury, D.; Jagota, A.; Mittal, J. J. Am. Chem. Soc. 2011, 133, 13545.
[18] Ma, Y. F.; Ali, S. R.; Dodoo, A. S.; He, H. X. J. Phys. Chem. B 2006, 110, 16359.
[19] Liu, S.; Guo, X. F. NPG Asia Mater. 2012, 4, 1.
[20] Heng, L. Y.; Chou, A.; Yu, J.; Chen, Y.; Gooding, J. J. Electrochem. Commun. 2005, 7, 1457.
[21] Banks, C. E.; Davies, T. J.; Wildgoose, G. G.; Compton, R. G. Chem. Commun. 2005, 829.
[22] Li, S. N.; He, P. G.; Dong, J. H.; Guo, Z. X.; Dai, L. M. J. Am. Chem. Soc. 2005, 127, 14.
[23] Kim, J. H.; Kataoka, M.; Jung, Y. C.; Fujisawa, K.; Hayashi, T.; Kim, Y. A.; Endo, M. ACS Appl. Mater. Interfaces 2013, 5, 4150.
[24] Jana, D.; Sun, C. L.; Chen, L. C.; Chen, K. H. Prog. Mater. Sci. 2013, 58, 565.
[25] Gowtham, S.; Scheicher, R. H.; Pandey, R.; Karna, S. P.; Ahuja, R. Nanotechnology 2008, 19, 125701.
[26] Johnson, R. R.; Johnson, A. T.; Klein, M. L. Small 2010, 6, 31.
[27] Cao, Z.-X. Lin, M.-L. Chinese Chemical Society 27th Annual Conference Proceedings 14-9-069, 2010. (曹泽星, 林铭炼, 中国化学会第27届学术年会论文集, 2010, 14-9-069.)
[28] Bezanilla, A. L. J. Phys. Chem. C 2014, 118, 1472.
[29] Xu, H.; Xiao, J.; Ouyang, F.-P. Acta Phys. Sin. 2010, 59, 4186. (徐慧, 肖金, 欧阳方平, 物理学报, 2010, 59, 4186.)
[30] Song, C.; Xia, Y. Y.; Zhao, M. W.; Liu, X. D.; Huang, B. D.; Li, F.; Ji, Y. J. Phys. Rev. B 2005, 72, 165430.
[31] Katz, E.; Willner, I. ChemPhysChem 2004, 5, 1084.
[32] Khare, B. N.; Wilhite, P.; Quinn, R. C.; Chen, B.; Schingler, R. H.; Tran, B. J.; Imanaka, H.; So, C. R.; Bauschlicher, C. W.; Meyyappan, M. J. Phys. Chem. B 2004, 108, 8166.
[33] Srivastva, D.; Menon, M.; Cho, K. Phys. Rev. Lett. 1999, 83, 2973.
[34] Wang, R.-X.; Zhang, D.–J.; Wu, J.; Liu, C.-B. Acta Chim. Sinica 2007, 65, 107. (王若曦, 张冬菊, 武剑, 刘成卜, 化学学报, 2007, 65, 107.)
[35] Zhang, Y. M.; Zhang, D. J.; Liu, C. B. J. Phys. Chem. B 2006, 110, 4671.
[36] Zhao, Q.; Nardelli, M. B.; Liu, W.; Bernholc, J. Nano Lett. 2005, 5, 847.
[37] Zhang, Y.; Frankin, N. W.; Chen, R. J.; Dai, H. Chem. Phys. Lett. 2000, 331, 35.
[38] Srivastva, D.; Menon, M.; Cho, K. Phys. Rev. Lett. 1999, 83, 2973.
[39] Wang, R.-X.; Zhang, D.-J.; Zhu, R.-X.; Liu, C.-B. Sci. Sinica Chim. B 2013, 43, 63. (王若曦, 张冬菊, 朱荣秀, 刘成卜, 中国科学B, 化学, 2013, 43, 63.)
[40] Zhang, J.-D.; Yang, C.; Chen, Y.-T.; Zhang, B.-X.; Shao, W.-Y. Acta Phys. Sin. 2011, 60, 106121. (张建东, 杨春, 陈元涛, 张变霞, 邵文英, 物理学报, 2011, 60, 106121.)

文章导航

/