综述

过渡金属促进的二氟烷基化和一氟烷基化反应研究进展

  • 倪传法 ,
  • 朱林桂 ,
  • 胡金波
展开
  • 中国科学院上海有机化学研究所有机氟化学重点实验室 上海 200032

收稿日期: 2014-11-05

  网络出版日期: 2015-01-12

基金资助

项目受国家重点基础研究发展计划(973 计划) (Nos. 2015CB931900, 2012CB821600)、国家自然科学基金(Nos. 21472221, 21372246, 21202189, 21421002)、上海市启明星计划(No. 13QH1402400)和中国科学院资助.

Advances in Transition-Metal-Mediated Di-and Monofluoroalkylations

  • Ni Chuanfa ,
  • Zhu Lingui ,
  • Hu Jinbo
Expand
  • Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2014-11-05

  Online published: 2015-01-12

Supported by

Project supported by the National Basic Research Program of China (Nos. 2015CB931900, 2012CB821600), the National Natural Science Foundation of China (Nos. 21472221, 21372246, 21202189, 21421002), Shanghai QMX program (No. 13QH1402400), and Chinese Academy of Sciences.

摘要

过渡金属参与的氟烷基化反应是当前有机氟化学研究的一个热点. 在过去的五年里, 由于新试剂新方法的发展, 过渡金属促进的全氟烷基化反应取得了长足的发展. 与全氟烷基化相比, 二氟和一氟烷基化反应不但可以方便地向分子中引入一个或几个氟原子, 还可以同时引入其它官能团, 因此在合成的步骤经济性上具有比直接氟化更大的优势. 尽管过渡金属促进的二氟和一氟烷基化反应是伴随着全氟烷基化反应而发展起来的, 在反应形式上与后者有很多相似之处, 但是二氟和一氟烷基化反应发展相对缓慢, 仍然存在发展空间. 在这篇综述里面, 我们首次全面地总结了过渡金属促进的二氟和一氟烷基化反应在过去近三十年时间里的发展进程. 全文包括五部分: 第一部分是引言, 从总体上介绍了二氟和一氟烷基化在氟化学中的地位; 第二、三两部分着重把官能团化的二氟烷基化反应和一氟烷基化反应按照反应的种类(即: 不饱和卤代烃的氟烷基化、不饱和体系碳-氢键氟烷基化、有机硼以及金属试剂的氟烷基化、不饱和碳-碳键的加成)进行了梳理; 第四部分为了强调二氟和一氟甲基化在氟烷基化中的重要地位, 将其单独介绍; 最后一部分是总结和展望.

本文引用格式

倪传法 , 朱林桂 , 胡金波 . 过渡金属促进的二氟烷基化和一氟烷基化反应研究进展[J]. 化学学报, 2015 , 73(2) : 90 -115 . DOI: 10.6023/A14110758

Abstract

Transition-metal-mediated fluoroalkylation is a hot research topic in current organofluorine chemistry. In the past five years, due to the development of new perfluoroalkylation reagents and methodologies, significant progress has been made in the field of transition-metal-mediated perfluoroalkylation. Compared with perfluoroalkylation, di-and monofluoroalkylation can not only introduce fluorine atom(s) into a molecule, but also install a non-fluorinated moiety simultaneously; therefore, in organic synthesis, these reactions are of higher step economy than the direct fluorination reactions. Although analogous to transition-metal-mediated perfluoroalkylations, the di-and monofluoroalkylation have been relatively less developed; therefore, there are still many opportunities for their development. In this review, we have made a survey on transition-metal-mediated di-and monofluoroalkylation reactions that were published in the past nearly 30 years. To our knowledge, this is the first rather comprehensive review on this topic. This review is divided into five sections. The first section is the general introduction on di-and monofluoroalkylation. The second and third sections focus on the historical development of transition-metal-mediated di-and monofluoroalkylation with reagents that contain functional groups. These two sections are subdivided according to the reactions types, that is, fluoroalkylation of unsaturated organohalides, fluoroalkylation of the carbon-hydrogen bonds of unsaturated systems (arenes, alkenes, alkynes, and carbonyl compounds), fluoroalkylation of organoborane reagents and organometallic reagents, fluoroalkyl addition to unsaturated carbon-carbon bonds. The fourth section puts an emphasis on the transition-metal-promoted di-and monofluoromethylation reactions. The final section gives some perspectives on the future development of this chemistry.

参考文献

[1] (a) Hiyama, T. Organofluorine Compounds: Chemistry and Applications, Springer, New York, 2000.
(b) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity and Applications, 2nd Ed., Wiley-VCH, Weinheim, 2013.
(c) Bégué, J. P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley-VCH, Weinheim, 2008.
(d) Fluorine in Medicinal Chemistry and Chemical Biology, Ed.: Ojima, I., Wiley-Blackwell, Chichester, 2009.
(e) Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications, Eds.: Gouverneur, V.; Muller, K., Imperial College Press, London, 2012.
[2] (a) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.
(b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Purse, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(d) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
(e) Prakash, G. K. S.; Wang, F. Chim. Oggi 2012, 30, 30.
(f) Wang, J.; Liu, H. Chin. J. Org. Chem. 2011, 31, 1785. (王江, 柳红, 有机化学, 2011, 31, 1785.)
[3] For selected reviews on transition-metal-mediated perfluoroalkylation reactions, see: (a) Lundgren, R. J.; Stradiotto, M. Angew. Chem., Int. Ed. 2010, 49, 9322.
(b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(c) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Asian J. 2012, 7, 1744.
(d) Besset, T.; Schneider, C.; Cahard, D. Angew. Chem., Int. Ed. 2012, 51, 5048.
(e) Ye, Y.; Sanford, M. S. Synlett 2012, 2005.
(f) Qing, F.-L. Chin. J. Org. Chem. 2012, 32, 815. (卿凤翎, 有机化学, 2012, 32, 815.)
(g) Pan, F.; Shi, Z. Acta Chim. Sinica, 2012, 70, 1679. (潘菲, 施章杰, 化学学报, 2012, 70, 1679.)
(h) Wang, X.; Zhang, Y.; Wang, J. Sci. Sin. Chim. 2012, 42, 1417. (王兮, 张艳, 王剑波, 中国科学: 化学, 2012, 42, 1417.)
(i) Chen, P.; Liu, G. Synthesis 2013, 45, 2929.
(j) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem. Int. Ed. 2013, 52, 8214.
(k) Xu, J.; Liu, X.; Fu, Y. Tetrahedron Lett. 2014, 55, 585.
(l) Wang, G.; He, X.; Dai, J.; Xu, H. Chin. J. Org. Chem. 2014, 34, 837. (王光祖, 赫侠平, 戴建军, 许华建, 有机化学, 2014, 34, 837.)
(m) Zhang, J.; Jin, C.; Zhang, Y. Chin. J. Org. Chem. 2014, 34, 662. (张霁, 金传飞, 张英俊, 有机化学, 2014, 34, 662.)
(n) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
(o) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
[4] (a) Liu, Y.-L.; Yu, J.-S.; Zhou, J. Asian J. Org. Chem. 2013, 2, 194.
(b) Gao, B.; Ni, C.; Hu, J. Chimia 2014, 68, 414.
(c) Xu, P.; Guo, S.; Wang, L.; Tang, P. P. Synlett 2015, 26, 36.
(d) Besset, T. ; Poisson, T.; Pannecoucke, X. Chem. Eur. J. 2014, 20, 16830.
[5] (a) Erichson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626.
(b) Smart, B. E. J. Fluorine Chem. 2001, 109, 3.
(c) Knust, H.; Achermann, G.; Ballard, T.; Buettelmann, B.; Gasser, R.; Fischer, H.; Hernandez, M.-C.; Knoflach, F.; Koblet, A.; Stadler, H.; Thomas, A. W.; Trube, G.; Waldmeier, P. Bioorg. Med. Chem. Lett. 2009, 19, 5940.
(d) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(e) Yang, Y.; You Z.; Qing, F. Acta Chim. Sinica 2012, 70, 2323. (杨义, 游正伟, 卿凤翎, 化学学报, 2012, 70, 2323.)
(f) O'Hagan, D.; Wang, Y.; Skibinski, M.; Slawin, A. M. Z. Pure Appl. Chem. 2012, 84, 1587.
[6] (a) Hertel, L. W.; Boder, G. B.; Kroin, J. S.; Rinzel, S. M.; Poore, G. A.; Todd, G. C.; Grindey, G. B. Cancer Res. 1990, 50, 4417.
(b) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(c) Link, J. O.; Taylor, J. G.; Xu, L.; Mitchell, M.; Guo, H.; Liu, H.; Kato, D.; Kirschberg, T.; Sun, J.; Squires, N.; Parrish, J.; Keller, T.; Yang, Z.-Y.; Yang, C.; Matles, M.; Wang, Y.; Wang, K.; Cheng, G.; Tian, Y.; Mogalian, E.; Mondou, E.; Cornpropst, M.; Perry J.; Desai, M. C. J. Med. Chem. 2014, 57, 2033.
(d) Eto, H.; Kaneko, Y.; Sakamoto, T. Chem. Pharm. Bull. 2000, 48, 982.
(e) Xue, F.; Li, H.; Delker, S. L.; Fang, J.; Martásek, P.; Roman, L. J.; Poulos, T. L.; Silverman, R. B. J. Am. Chem. Soc. 2010, 132, 14229.
(f) Anderson, M. O.; Zhang, J.; Liu, Y.; Yao, C.; Phuan, P.-W.; Verkman, A. S. J. Med. Chem. 2012, 55, 5942.
(g) Shen, K.; Keng, Y.-F.; Wu, L.; Guo, X.-L.; Lawrence, D. S.; Zhang, Z.-Y. J. Biol. Chem. 2001, 276, 47311.
(h) Silva, A. M.; Cachau, R. E.; Sham, H. L.; Erickson, J. W. J. Mol. Biol. 1996, 255, 321.
[7] (a) Markovski, L. N.; Pahinnik, V. E.; Kirsanov, A. V. Synthesis 1973, 787.
(b) Middleton, W. J. J. Org. Chem. 1975, 40, 574.
(c) Singh, R. P.; Shreeve, J. M. J. Org. Chem. 2003, 68, 6063.
(d) Umemoto, T.; Singh, R. P.; Xu, Y.; Saito, N. J. Am. Chem. Soc. 2010, 132, 18199.
[8] (a) Prakash, G. K. S.; Hu, J. Acc. Chem. Res. 2007, 40, 921.
(b) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465.
(c) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, doi: 10.1021/cr5002386.
[9] (a) McLoughlin, V. C. R.; Thrower, J. U.S. Patent 3408411, 1968 [Chem. Abstr. 1968, 70, 57375].
(b) McLoughlin, V. C. R.; Thrower, J. Tetrahedron 1969, 25, 5921.
(c) Kobayashi, Y.; Kumadaki, I. Tetrahedron Lett. 1969, 10, 4095.
[10] Taguchi, T.; Kitagawa, O.; Morikawa, T.; Nisiwaki, T.; Uehara, H.; Endo, H.; Kobayashi, Y. Tetrahedron Lett. 1986, 27, 6103.
[11] (a) Sato, K.; Kawata, R.; Ama, F.; Omote, M.; Ando, A.; Kumadaki, I. Chem. Pharm. Bull. 1999, 47, 1013.
(b) Sato, K.; Omote, M.; Ando, A.; Kumadaki, I. J. Fluorine Chem. 2004, 125, 509.
[12] Ashwood, M. S.; Cottrell, I. F.; Cowden, C. J.; Wallace, D. J.; Davies, A. J.; Kenney, D. J.; Dolling, U. H. Tetrahedron Lett. 2002, 43, 9271.
[13] Kitagawa, O.; Taguchi, T.; Kobayashi, Y. Chem. Lett. 1989, 18, 389.
[14] Han, X.; Yue, Z.; Zhang, X.; He, Q.; Yang, C. J. Org. Chem. 2013, 78, 4850.
[15] Wong, B.; Linghu, X.; Crawford, J. J.; Drobnick, J.; Lee, W.; Zhang, H. Tetrahedron 2014, 70, 1508.
[16] Zhu, J.; Zhang, W.; Zhang, L.; Liu, J.; Zheng, J.; Hu, J. J. Org. Chem. 2010, 75, 5505.
[17] Jiang, H.; Lu, W.; Yang, K.; Ma, G.; Xu, M.; Li, J.; Yao, J.; Wan, W.; Deng, H.; Wu, S.; Zhu, S.; Hao, J. Chem. Eur. J. 2014, 20, 10084.
[18] Qiu, W.; Burton, D. J. Tetrahedron Lett. 1996, 37, 2745.
[19] Yokomatsu, T.; Suemune, K.; Murano, T.; Shibuya, S. J. Org. Chem. 1996, 61, 7207.
[20] Yukomastu, T.; Murano, T.; Suemune, K.; Shibuya, S. Tetrahedron 1997, 53, 815.
[21] Zhang, X.; Burton, D. J. Tetrahedron Lett. 2000, 41, 7791.
[22] (a) Feng, Z.; Chen, F.; Zhang, X. Org. Lett. 2012, 14, 1938.
(b) Feng, Z.; Xiao, Y.-L.; Zhang, X. Org. Chem. Front. 2014, 1, 113.
[23] Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. Org. Lett. 2011, 13, 5560.
[24] Fujikawa, K.; Kobayashi, A.; Amii, H. Synthesis 2012, 44, 3015.
[25] Guo, Y.; Shreeve, J. M. Chem. Commun. 2007, 3583.
[26] Guo, C.; Wang, R.-W.; Qing, F.-L. J. Fluorine Chem. 2012, 143, 135.
[27] Ge, S.; Chaladaj, W.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 4149.
[28] Ge, S.; Arlow, S. I.; Mormino, M. G.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 14401.
[29] Zhu, J.; Wang, F.; Huang, W.; Zhao, Y.; Ye, W.; Hu, J. Synlett 2011, 899.
[30] For early examples on transition-metal-mediated fluoroalkylation of (hetero)arenes, see: (a) Chen, Q.; Qiu, Z. Chin. J. Org. Chem. 1987, 1, 44. (陈庆云, 裘再明, 有机化学, 1987, 1, 44.)
(b) Zhou, Q.-L.; Huang, Y.-Z. J. Fluorine Chem. 1988, 39, 87.
(c) Zhou, Q.-L.; Huang, Y.-Z. J. Fluorine Chem. 1989, 43, 385.
[31] (a) Chen, Q.-Y.; Yang, Z.-Y. Acta Chim. Sinica 1985, 43, 1118. (陈庆云, 杨震宇, 化学学报, 1985, 43, 1118.)
(b) Chen, Q.-Y.; Yang, Z.-Y.; Zhao, C.-X.; Qiu, Z.-M. J. Chem. Soc. Perkin Trans. 1 1988, 563.
[32] (a) Surapanich, N.; Kuhakarn, C.; Pohmakotr, M.; Reutrakul, V.; Eur. J. Org. Chem. 2012, 5943.
(b) Feng, Z.; Min, Q.-Q.; Zhao, H.-Y.; Gu, J.-W.; Zhang, X.-G. Angew. Chem., Int. Ed. 2015, doi: 10.1002/anie.201409617.
[33] (a) Belhomme, M.-C.; Poissan, T.; Pannecoucke, X. Org. Lett. 2013, 15, 3428.
(b) Caillot, G.; Dufour, J.; Belhomme, M.-C.; Poisson, T.; Grimaud, L.; Pannecoucke, X.; Gillaizeau, I. Chem. Commun. 2014, 50, 5887.
[34] (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(b) Dai, X.; Xu, X.; Li, X. Chin. J. Org. Chem. 2013, 33, 2046. (戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2046.)
[35] (a) Jiang, H.; Huang, C.; Guo, J.; Zeng, C.; Zhang, Y.; Yu, S. Chem. Eur. J. 2012, 18, 15158.
(b) Yu, C.; Iqbal, N.; Park, S.; Cho, E. J. Chem. Commun. 2014, 50, 12884.
[36] (a) Uneyama, K.; Tanaka, H.; Kobayashi, S.; Shioyama, M.; Amii, H. Org. Lett. 2004, 6, 2733.
(b) Ohtsuka, Y.; Yamakawa, T. Tetrahedron 2011, 67, 2323.
[37] (a) Lin, Q.; Chu, L.; Qing, F. Chin. J. Chem. 2013, 31, 885.
(b) Su, Y.-M.; Hou, Y.; Yin, F.; Xu, Y.-M.; Li, Y.; Zheng, X.; Wang, X. Org. Lett. 2014, 16, 2958.
(c) Jung, J.; Kim, E.; You, Y.; Cho, E. J. Adv. Synth. Catal. 2014, 356, 2741.
(d) Wang, L.; Wei, X.-J.; Lei, W.-L.; Chen, H.; Wu, L.-Z.; Liu, Q. Chem. Commun. 2014, 50, 15916.
(e) Wang, L.; Wei, X.-J.; Jia, W.-L.; Zhong, J.-J.; Wu, L.-Z.; Liu, Q. Org. Lett. 2014, 16, 5842.
[38] Belhomme, M.-C.; Poissan, T.; Pannecoucke, X. J. Org. Chem. 2014, 79, 7205.
[39] (a) Zhou, Q.; Ruffoni, A.; Gianatassio, R.; Fujiwara, Y.; Sella, E.; Shabat, D.; Baran, P. S. Angew. Chem. Int. Ed. 2013, 52, 3949.
(b) Zhou, Q.; Gui, J.; Pan, C.-M.; Albone, E.; Cheng, X.; Suh, E. M.; Grasso, L.; Ishihara, Y.; Baran, P. S. J. Am. Chem. Soc. 2013, 135, 12994.
[40] Hafner, A.; Bihlmeier, A.; Nieger, M.; Klopper, W.; Bräse, S. J. Org. Chem. 2013, 78, 7938.
[41] Shi, S.-L.; Buchwald, S. L. Angew. Chem. Int. Ed. 2015, DOI: 10.1002/anie.201410471.
[42] (a) Li, Y.; Zhu, J.; Xie, H.; Li, S.; Peng, D.; Li, Z.; Wu, Y.; Gong, Y. Chem. Commun. 2012, 48, 3136.
(b) Li, Y.; Zhang, L.; Zhang, L.; Wu, Y.; Gong, Y. Eur. J. Org. Chem. 2013, 8039.
[43] Jiang, X.; Chu, L.; Qing, F.-L. Org. Lett. 2012, 14, 2870.
[44] (a) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 10875.
(b) Pham, P. V.; Nagib, D. V.; MacMillan, D. W. C. Angew. Chem. Int. Ed. 2011, 50, 6119.
[45] Qi, Q.; Shen, Q.; Lu, L. J. Am. Chem. Soc. 2012, 134, 6548.
[46] Ma, G.; Wan, W.; Hu, Q.; Jiang, H.; Wang, J.; Zhu, S.; Hao, J. Chem. Commun. 2014, 50, 7527.
[47] (a) Feng, Z.; Min, Q.-Q.; Xiao, Y.-L.; Zhang, B.; Zhang, X. Angew. Chem. Int. Ed. 2014, 53, 1669.
(b) Min, Q.-Q.; Yin, Z.; Feng, Z.; Guo, W.-H.; Zhang, X. J. Am. Chem. Soc. 2014, 136, 1230.
(c) Yu, Y.-B.; He, G.-Z.; Zhang, X. Angew. Chem. Int. Ed. 2014, 53, 10457.
(d) Xiao, Y.; Zhang, B.; Feng, Z.; Zhang, X. Org. Lett. 2014, 16, 4822.
(e) Xiao, Y.; Guo, W.-H.; He, G.-Z.; Pan, Q.; Zhang, X. Angew. Chem. Int. Ed. 2014, 53, 9909.
(f) Gu, J.-W.; Guo, W.-H.; Zhang, X. Org. Chem. Front. 2015, 2, 38.
[48] Jiang, X.; Chu, L.; Qing, F.-L. New J. Chem. 2013, 37, 1736.
[49] Schwaebe, M. K.; McCarthy, J. R.; Whitten, J. P. Tetrahedron Lett. 2000, 41, 791.
[50] Araki, K.; Inoue, M. Tetrahedron 2013, 69, 3913.
[51] Besset, T.; Poisson, T.; Pannecoucke, X. Eur. J. Org. Chem. 2014, 7220.
[52] Organofluorine Chemistry in China, Ed.: Huang, W.-Y., Shanghai Science & Technology Press, Shanghai, 1996. (黄维垣主编, 中国有机氟化学研究, 上海科学技术出版社, 上海, 1996.)
[53] Kwak, K. C.; Lee, W.-Y.; Zheshan, Q.; Lee, Y. H.; Yun, Y.-G.; Kwak, G. B.; Chung, H. T.; Kwon, T.-O.; Chai, K. Y. Bull. Korean Chem. Soc. 2005, 26, 97.
[54] (a) Burton, D. J.; Kehoe, L. J. J. Org. Chem. 1970, 35, 1339.
(b) Gonzalez, J.; Foti, C. J.; Elsheimer, S. J. Org. Chem. 1991, 56, 4322.
[55] (a) Qiu, Z.-M.; Burton, D. J. Tetrahedron Lett. 1993, 34, 3239.
(b) Qiu, Z.-M.; Burton, D. J. J. Org. Chem. 1995, 60, 5570.
[56] Hu, C.-M.; Chen, J. J. Fluorine Chem. 1994, 69, 79.
[57] Xu, T. ; Cheung, C. W. ; Hu, X. Angew. Chem. Int. Ed. 2014, 53, 4910.
[58] (a) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160.
(b) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875.
[59] Sato, K.; Tamura, M.; Tamoto, K.; Omote, M.; Akira, A.; Kumadaki, I. Chem. Pharm. Bull. 2000, 48, 1023.
[60] Sato, K.; Nakazato, S.; Enko, H.; Tsujita, H.; Fujita, K.; Yamamoto, T.; Omote, M.; Akira, A.; Kumadaki, I. J. Fluorine Chem. 2003, 121, 105.
[61] Surmont, R.; Verniest, G.; Thuring, J. W.; Macdonald, G.; Deroose, F.; De Kimpe, N. J. Org. Chem. 2010, 75, 929.
[62] Kim, B. C.; Park, A.; An, J. E.; Lee, W. K.; Lee, H. B.; Shin, H. Synthesis 2012, 3165.
[63] Zhao, G.; Sun, H.-L.; Qian, Z. S.; Yin, W.-X. J. Fluorine Chem. 2001, 111, 217.
[64] (a) Sato, K.; Tarui, A.; Kita, T.; Ishida, Y.; Tamura, H.; Omote, M.; Ando, A.; Kumadaki, I. Tetrahedron Lett. 2004, 45, 5735.
(b) Sato, K.; Ishida, Y.; Murata, E.; Oida, Y.; Mori, Y.; Okawa, M.; Iwase, K.; Tarui, A.; Omote, M.; Kumadaki, I.; Ando, A. Tetrahedron 2007, 63, 12735.
[65] Sato, K.; Yamazoe, S.; Akashi, Y.; Hamano, T.; Miyamoto, A.; Sugiyama, S.; Tarui, A.; Omote, M.; Kumadaki, I.; Ando, A. J. Fluorine Chem. 2010, 131, 86.
[66] Ma, G.; Wan, W.; Li, J.; Hu, Q.; Jiang, H.; Zhu, S.; Wang, J.; Hao, J. Chem. Commun. 2014, 50, 9749.
[67] (a) Wei, X.-J.; Yang, D.-T.; Wang, L.; Song, T.; Wu, L-Z.; Liu, Q. Org. Lett. 2013, 15, 6054.
(b) Fu, W.; Zhu, M.; Zou, G.; Xu, C.; Wang, Z. Asian J. Org. Chem. 2014, 3, 1273.
[68] (a) Wang, J.-Y.; Su, Y.-M.; Yin, F.; Bao, Y.; Zhang, X.; Xu, Y.-M.; Wang, X.-S. Chem. Commun. 2014, 50, 4108.
(b) Wang, J.-Y.; Zhang, X.; Bao, Y.; Xu, Y.-M.; Cheng, X.-F.; Wang, X.-S. Org. Biomol. Chem. 2014, 12, 5582.
[69] (a) Jiang, H.; Cheng, Y.; Wang, R.; Zheng, M.; Zhang, Y.; Yu, S. Angew. Chem., Int. Ed. 2013, 52, 13289.
(b) Sun, X.; Yu, S. Org. Lett. 2014, 16, 2938.
[70] (a) He, Z.; Luo, T.; Hu, M.; Cao, Y.; Hu, J. Angew. Chem. Int. Ed. 2012, 51, 3944.
(b) He, Z.; Hu, M.; Luo, T.; Li, L.; Hu, J. Angew. Chem. Int. Ed. 2012, 51, 11545.
[71] (a) Zemtsov, A. A.; Kondratyev, N. S.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. J. Org. Chem. 2014, 79, 818.
(b) Kosobokov, M. D.; Levin, V. V.; Zemtsov, A. A.; Struchkova, M. I.; Korlyukov, A. A.; Arkhipov, D. E.; Dilman, A. D. Org. Lett. 2014, 16, 1438.
[72] Levin, V. V.; Zemtsov, A. A.; Struchkova, M. I.; Dilman, A. D. J. Fluorine Chem. 2014, doi:10.1016/j.jfluchem.2014.08.21
[73] (a) O’Hagan D. Chem. Soc. Rev. 2008, 37, 308.
(b) Zimmer, L. E.; Sparr, C.; Gilmour, R. Angew. Chem., Int. Ed. 2011, 50, 11860.
[74] Zhang, X.; Qiu, W.; Burton, D. J. J. Fluorine Chem. 1998, 89, 39.
[75] Zhang, X.; Qiu, W. M.; Burton, D. J. Tetrahedron Lett. 1999, 40, 2681.
[76] (a) Tomoko, K.; Tomoya, K. Isr. J. Chem. 1999, 39, 129.
(b) Jiang, B.; Huang, Z.-G.; Cheng, K.-J. Tetrahedron: Asymmetry 2006, 17, 942.
(c) Shibatomi, K.; Muto, T.; Sumikawa, Y.; Narayama, A.; Iwasa, S. Synlett 2009, 241.
[77] Wang, W.; Shen, H.; Wan, X.-L.; Chen, Q.-Y.; Guo, Y. J. Org. Chem. 2014, 79, 6347.
[78] (a) Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2005, 44, 6924.
(b) Nakamura, M.; Hajra, A.; Endo, K.; Nakamura, E. Angew. Chem., Int. Ed. 2005, 44, 7248.
(c) Burger, E. C.; Barron, B. R.; Tunge, J. A. Synlett 2006, 2824.
[79] (a) Bélanger, É.; Cantin, K.; Messe, O.; Tremblay, M.; Paquin, J.-F. J. Am. Chem. Soc. 2007, 129, 1034.
(b) Bélanger, É; Houzé, C.; Guimond, N.; Cantin, K.; Paquin, J.-F. Chem. Commun. 2008, 3251.
(c) Bélanger,É.; Pouliot, M.-F.; Paquin, J.-F. Org. Lett. 2009, 11, 2201.
[80] Beare, N. A.; John, F.; Hartwig, J. F. J. Org. Chem. 2002, 67, 541.
[81] (a) Guo, Y.; Twamley, B.; Shreeve, J. M. Org. Biomol. Chem. 2009, 1716.
(b) Guo, Y.; Tao, G.-H.; Blumenfeld, A.; Shreeve, J. M. Organometallics 2010, 29, 1818.
[82] Guo, C.; Wang, R.-W.; Guo, Y.; Qing, F.-L. J. Fluorine Chem. 2012, 133, 86.
[83] Guo, C.; Yue, X.; Qing, F.-L. Synthesis 2010, 1837.
[84] (a) Tarui, A.; Kondo, S.; Sato, K.; Omote, M.; Minami, H.; Miwa, Y.; Ando, A. Tetrahedron 2013, 69, 1559.
(b) Tarui, A.; Miyata, E.; Tanaka, A.; Sato, K.; Omote, M.; Ando, A. Synlett 2015, 26, 55.
[85] Liang, F.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 5520.
[86] Jiang, X.; Sakthivel, S.; Kulbitski, K.; Nisnevich, G.; Gandelman, M. J. Am. Chem. Soc. 2014, 136, 9548.
[87] Chowdhury, M. A.; Abdellatif, K. R. A.; Dong, Y.; Das, D.; Suresh, M. R.; Knaus, E. E. J. Med. Chem. 2009, 52, 1525.
[88] Narjes, F.; Koehler, K. F.; Koch, U.; Gerlach, B.; Colarusso, S.; Steinkuhler, C.; Brunetti, M.; Altamura, S.; De Francesco, R.; Matassa, V. G. Bioorg. Med. Chem. Lett. 2002, 12, 701.
[89] Xu, Y.; Prestwich, G. D. J. Org. Chem. 2002, 67, 7158.
[90] Shin, J. M.; Cho, Y. M.; Sachs, G. J. Am. Chem. Soc. 2004, 126, 7800.
[91] (a) Chauvigné -Hines, L. M.; Anderson, L. N.; Weaver, H. M.; Brown, J. N.; Koech, P. K.; Nicora, C. D.; Hofstad, B. A.; Smith, R. D.; Wilkins, M. J.; Callister, S. J.; Wright, A. T. J. Am. Chem. Soc. 2012, 134, 20521.
(b) Kwan, D. H.; Chen, H.-M.; Ratananikom, K.; Hancock, S. M.; Watanabe, Y.; Kongsaeree, P. T.; Samuels, A. L.; Withers, S. G. Angew. Chem., Int. Ed. 2011, 50, 300.
[92] (a) Kollonitsch, J.; Patchett, A. A.; Marburg, S.; Maycock, A. L.; Perkins, L. M.; Doldouras, G. A.; Duggan, D. E.; Aster, S. D. Nature 1978, 274, 906.
(b) Grunewald, G. L.; Caldwell, T. M.; Li, Q.; Slavica, M.; Criscione, K. R.; Borchardt, R. T.; Wang, W. J. Med. Chem. 1999, 42, 3588.
(c) Grunewald, G. L.; Seim, M. R.; Regier, R. C.; Martin, J. L.; Gee, L.; Drinkwater, N.; Criscione, K. R. J. Med. Chem. 2006, 49, 5424.
(d) Rothman, S. C.; Johnston, J. B.; Lee, S.; Walker, J. R.; Poulter, C. D. J. Am. Chem. Soc. 2008, 130, 4906.
[93] (a) Pérez, R. A.; Sánchez-Brunete, C.; Miguel, E.; Tadeo, J. L. J. Agric. Food Chem. 1998, 46, 1864.
(b) Schwarz, S.; Kehrenberg, C.;Doublet, B.; Cloeckaert, A. FEMS Microbiol. Rev. 2004, 28, 519.
[94] Hu, J.; Ni, C. Synthesis 2011, 770.
[95] (a) See Ref. 8.
(b) Hu, J.; Ni, C. In Science of Synthesis: C-1 Building Blocks in Organic Synthesis, Vol. 2, Ed.: van Leeuwen, P. W. N. M., Thieme, Stuttgart, 2014, pp. 409~457.
[96] For recent examples on transition-metal-free difluoromethylation reactions, see: (a) Stephens, D. E.; Chavez, G.; Valdes, M.; Dovalina, M.; Arman, H. D.; Larionov, O. V. Org. Biomol. Chem. 2014, 12, 6190.
(b) Shiosaki, M.; Inoue, M. Tetrahedron Lett. 2014, 55, 6839.
(c) Levin, V. V.; Trifonov, A. L.; Zemtsov, A. A.; Struchkova, M. I.; Arkhipov, D. E.; Dilman, A. D. Org. Lett. 2014, 16, 6256.
(d) Thomoson, C. S.; Wang, L.; Dolbier, W. R., Jr. J. Fluorine Chem. 2014, 168, 34.
(e) Tsymbal, A. V.; Kosobokov, M. D.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. J. Org. Chem. 2014, 79, 7831.
(f) Kosobokov, M. D.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2014, 16, 3784.
[97] Hu, J. J. Fluorine Chem. 2009, 130, 1130.
[98] (a) Ni, C.; Li, Y.; Hu, J. J. Org. Chem. 2006, 71, 6829.
(b) Fukuzumi, T.; Shibata, N.; Sugiura, M.; Yasui, H.; Nakamura, S.; Toru, T. Angew. Chem., Int. Ed. 2006, 45, 4973.
[99] Liu, W.-B.; Zheng, S.-C.; He, H.; Zhao, X.-M.; Dai, L.-X.; You, S.-L. Chem. Commun. 2009, 6604.
[100] (a) Zhao, Y.; Gao, B.; Ni, C.; Hu, J. Org. Lett. 2012, 14, 6080.
(b) Zhao, Y.; Ni, C.; Jiang, F.; Gao, B.; Shen, X.; Hu, J. ACS Catal. 2013, 3, 631.
[101] Inoue, M.; Araki, K. Jpn. Kokai Tokkyo Koho, 2011162521, 2011 [Chem. Abstr. 2011, 155, 352215].
[102] Cao, J.-J.; Wang, X.; Wang, S.-Y.; Ji, S.-J. Chem. Commun. 2014, 50, 12892.
[103] (a) Konovalov, A. I.; Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2014, 136, 13410.
(b) Nebra, N.; Grushin, V. V. J. Am. Chem. Soc. 2014, 136, 16998.
[104] Burton, D. J.; Hartgraves, G. A.; Hsu, J. Tetrahedron Lett. 1990, 31, 3699.
[105] Burton, D. J.; Hartgraves, G. A. J. Fluorine Chem. 2007, 128, 1198.
[106] Zhao, Y.; Huang, W.; Zheng, J.; Hu, J. Org. Lett. 2011, 13, 5342.
[107] Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 5524.
[108] Prakash, G. S. K.; Ganesh, S. K.; Jones, J.-P.; Kulkarni, A.; Masood, K.; Swabeck, J. K.; Olah, G. A. Angew. Chem. Int. Ed. 2012, 51, 12090.
[109] Jiang, X.-L.; Chen, Z.-H.; Xu, X.; Qing, F.-L. Org. Chem. Front. 2014, 1, 774.
[110] Matheis, C.; Jouvin, K.; Goossen, L. J. Org. Lett. 2014, 16, 5984.
[111] Gu, Y.; Leng, X.; Shen, Q. Nature Commun. 2014, 5, 5404.
[112] (a) Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 1494.
(b) Fujiwara, Y.; Dixon, J. A.; O’Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature2012, 492, 95.
(c) O’Hara, F.; Burns, A. C.; Collins, M. R.; Dalvie, D.; Ornelas, M. A.; Vaz, A. D. N.; Fujiwara, Y.; Baran, P. S. J. Med. Chem. 2014, 57, 1616.
[113] Li, Z.; Cui, Z.; Liu, Z.-Q. Org. Lett. 2013, 15, 406.
[114] Liu, J.; Zhuang, S.; Gui, Q.; Chen, X.; Yang, Z.; Tan, Z. Eur. J. Org. Chem. 2014, 3196.
[115] (a) Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R., Jr. Org. Lett. 2014, 16, 4594.
(b) Thomoson, C. S.; Tang, X.-J.; Dolbier, W. R., Jr. J. Org. Chem. 2015, 80, doi: 10.1021/jo502595g.
[116] (a) Ni, C.; Hu, J. Synthesis 2014, 842.
(b) Cao, P.; Duan, J.-X.; Chen, Q.-Y. J. Chem. Soc., Chem. Commun. 1994, 737.
[117] Levin, V. V.; Zemtsov, A. A.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2013, 15, 917.
[118] (a) Doi, H.; Ban, I.; Nonoyama, A.; Sumi, K.; Kuang, C.; Hosoya, T.; Tsukada, H.; Suzuki, M. Chem. Eur. J. 2009, 15, 4165.
(b) Doi, H.; Goto, M.; Suzuki, M. Bull. Chem. Soc. Jpn. 2012, 85, 1233.
[119] (a) See Refs. 3b, 30b, 30c, 32b.
(b) Hafner, A.; Jung, N.; Braese, S. Synthesis 2014, 46, 1440.
(c) Zeng, Y.; Hu, J. Chem.-Eur. J. 2014, 20, 6866.
(d) Dubinina, G. G.; Brennessel, W. W.; Miller, J. L.; Vicic, D. A. Organometallics 2008, 27, 3933.
(e) Winston, M. S.; Wolf, W. J.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 7777.
[120] Chu, L.; Zhang, X.; Qing, F.-L. Org. Lett. 2009, 11, 2197.
[121] [Yang, M.-H.; Orsi, D. L.; Altman, R. A. Angew. Chem., Int. Ed. 2015, 54, DOI: 10.1002/anie.201410039.

文章导航

/