可见光促进的氧化还原催化反应在天然产物全合成中的应用
收稿日期: 2014-12-12
网络出版日期: 2015-01-12
基金资助
项目受国家自然科学基金(Nos. 21232003, 21202053)与973计划(No. 2011CB808600)资助.
Visible-Light Photoredox Catalysis in Natural Products Synthesis
Received date: 2014-12-12
Online published: 2015-01-12
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21232003, 21202053) and the National Basic Research Program of China (973 program, No. 2011CB808600).
谭芬 , 肖文精 . 可见光促进的氧化还原催化反应在天然产物全合成中的应用[J]. 化学学报, 2015 , 73(2) : 85 -89 . DOI: 10.6023/A14120860
In recent years, remarkable achievements have been made in the field of the visible-light-induced photoredox catalysis. Many highly efficient and environment-friendly reactions have been developed and used in the construction of complex molecules. This manuscript will highlight the latest advances in this research area and overview the applications of this strategy as the key step in the total synthesis of natural products and natural product-like compounds.
[1] Ciamician, G. Science 1912, 36, 385.
[2] For selected early examples on visible-light photoredox catalysis in organic synthesis, see: (a) Pac, C.; Ihama, M.; Yasuda, M.; Miyauchi, Y.; Sakurai, H. J. Am. Chem. Soc. 1981, 103, 6495;
(b) Mandler, D.; Willner, I. J. Am. Chem. Soc. 1984, 106, 5352;
(c) Ishitani, O.; Yanagida, S.; Takamuku, S.; Pac, C. J. Org. Chem. 1987, 52, 2790.
[3] (a) Zeitler, K. Angew. Chem., Int. Ed. 2009, 48, 9785;
(b) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527;
(c) Teplý, F. Collect. Czech. Chem. Commun. 2011, 76, 859;
(d) Shi, L.; Xia, W.-J. Chem. Soc. Rev. 2012, 41, 7687;
(e) Xi, Y.-M.; Yi, H.; Lei, A.-W. Org. Biomol. Chem. 2013, 11, 2387;
(f) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985;
(g) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem. Eur. J. 2014, 20, 3874.
[4] (a) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159;
(b) Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. Top. Curr. Chem. 2007, 280, 117;
(c) Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti, F. Top. Curr. Chem. 2007, 281, 143.
[5] Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97.
[6] Wang, C.; Gao, S.-T.; Zhou, X.; Wu, Q.-H.; Jiao, C.-N.; Wang, Z. Chin. J. Org. Chem. 2014, 34, 2217. (王春, 高书涛, 周欣, 吴秋华, 教彩娜, 王志, 有机化学, 2014, 34, 2217.)
[7] (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102;
(b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828;
(c) Xuan, J.; Lu, L.-L.; Chen, J.-R.; Xiao, W.-J. Eur. J. Org. Chem. 2013, 6775;
(d) Dai, X.-J.; Xu, X.-L.; Li, X.-N. Chin. J. Org. Chem. 2013, 33, 2046. (戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2046);
(e) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[8] (a) Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 19350;
(b) Lu, Z.; Yoon, T. P. Angew. Chem., Int. Ed. 2012, 51, 10329;
(c) Riener, M.; Nicewicz, D. A. Chem. Sci. 2013, 4, 2625;
(d) Mizoguchi, H.; Oikawa, H.; Oguri, H. Nat. Chem. 2014, 6, 57;
(e) Xuan, J.; Xia, X.-D.; Zeng, T.-T.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-L.; Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53, 5653.
[9] Bach, T.; Hehn, J. P. Angew. Chem. Int. Ed. 2011, 50, 1000.
[10] (a) Furst, L.; Narayanam, J. M. R.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2011, 50, 9655;
(b) Sun, Y.; Li, R.; Zhang, W.; Li, A. Angew. Chem., Int. Ed. 2013, 52, 9201.
[11] Schnermann, M. J.; Overman, L. E. Angew. Chem., Int. Ed. 2012, 51, 9576.
[12] Yin, J.; Kong, L.-L.; Wang, C.; Shi, Y.-B.; Cai, S.-J.; Gao, S.-H. Chem. Eur. J. 2013, 19, 13040.
[13] Douglas, J. J.; Cole, K. P.; Stephenson, C. R. J. J. Org. Chem. 2014, 79, 11631.
[14] Beatty, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2014, 136, 10270.
[15] Ma, Z.-Q.; Wang, X.-L.; Wang, X.; Rodriguez, R. A.; Moore, C. E.; Gao, S.-H.; Tan, X.-H.; Ma, Y.-Y.; Rheingold, A. L.; Baran, P. S.; Chen, C. Science 2014, 346, 219.
/
| 〈 |
|
〉 |