大气中SO2和HCOOH在CaO表面的耦合相互作用
收稿日期: 2014-12-19
网络出版日期: 2015-01-12
基金资助
项目受国家自然科学基金(Nos. 41405118, 41105085)、中国气象科学研究院基本科研业务费专项资金(No. 2014Y007)、中国科学院先导专项(Grant No. XDB05010400)资助.
Synergistic Effect between SO2 and HCOOH on the Surface of CaO
Received date: 2014-12-19
Online published: 2015-01-12
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 41405118, 41105085), the Basic Scientific Research Progress of The Chinese Academy of Meteorological Sciences (No. 2014Y007), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB05010400).
矿物气溶胶表面非均相反应由于可以改变气溶胶理化性质以及大气痕量气体平衡而成为大气化学的研究热点. 然而目前关于痕量气体在矿物气溶胶表面的共同吸附研究却很有限. 本研究中采用原位漫反射红外光谱研究了大气中SO2和HCOOH在CaO表面的耦合相互作用. 通过分析红外光谱以及获取动力学曲线发现SO2和HCOOH在CaO颗粒物表面非均相反应相互抑制, 同时通入两种气体时表面产物甲酸盐和亚硫酸盐都减少. 通过分步实验发现SO2和HCOOH在CaO表面的耦合相互作用主要分为两个方面. SO2共同存在时可供吸附的反应活性位点变少从而抑制HCOOH在颗粒物表面反应, 导致产物甲酸盐生成量减少. 另一方面对于SO2在CaO表面的非均相反应而言, HCOOH会阻止SO2在颗粒物表面的非均相反应, 使得表面生成亚硫酸盐减少.
吴玲燕 , 佟胜睿 , 葛茂发 . 大气中SO2和HCOOH在CaO表面的耦合相互作用[J]. 化学学报, 2015 , 73(2) : 131 -136 . DOI: 10.6023/A14120875
Due to altering the properties of particles and the budget of trace gases, heterogeneous reactions on mineral aerosols become an important subject in the atmospheric chemistry. However, synergistic effects between trace gases on the surface of mineral aerosol are largely uncertain. In this work, the synergistic effect between SO2 and HCOOH on the surface of CaO was studied using in situ Diffusion Reflectance Infrared Fourier Spectroscopy (DRIFTS). From analysing of the spectral features and obtaining the kinetic curves, it is found that the heterogeneous reactions of SO2 and HCOOH on the surface of CaO blocked each other. In addtion, the formate and sulfite decreased when SO2 and HCOOH were introduced into the reaction chamber simultaneously. Synergistic effect between SO2 and HCOOH on the surface of CaO was mainly divided into two aspects according to step-by-step experiments. Less reactive sites available for adsorption because of the coexisting of SO2 inhibited the reaction of HCOOH on the surface of CaO, resulting in the decrease of the formation of formate. On the other hand, HCOOH could prevent SO2 from reacting with CaO so that the formation of sulfite decreased.
Key words: mineral aerosol; heterogeneous reaction; DRIFTS; formate; sulfite
[1] Dentener, F. J.; Carmichael, G. R.; Zhang, Y.; Lelieveld, J.; Crutzen, P. J. J. Geophys. Res.,-Atmos. 1996, 101, 22869.
[2] Harrison, S. P.; Kohfeld, K. E.; Roelandt, C.; Claquin, T. Earth-Sci. Rev. 2001, 54, 43.
[3] Han, L. H.; Zhuang, G. S.; Sun, Y. L.; Wang, Z. F. Science in China 2005, 35, 237. (韩力慧, 庄国顺, 孙业乐, 王自发, 中国科学, 2005, 35, 237.)
[4] Usher, C. R.; Michel, A. E.; Grassian, V. H. Chem. Rev. 2003, 103, 4883.
[5] Kolb, C. E.; Cox, R. A.; Abbatt, J. P. D.; Ammann, M.; Davis, E. J.; Donaldson, D. J.; Garrett, B. C.; George, C.; Griffiths, P. T.; Hanson, D. R.; Kulmala, M.; McFiggans, G.; Poeschl, U.; Riipinen, I.; Rossi, M. J.; Rudich, Y.; Wagner, P. E.; Winkler, P. M.; Worsnop, D. R.; O' Dowd, C. D. Atmos. Chem. Phys. 2010, 10, 10561.
[6] Jacob, D. J. Atmos. Environ. 2000, 34, 2131.
[7] Zhang, Y.; Carmichael, G. R. J. Appl. Meteorol. 1999, 38, 353.
[8] Levin, Z.; Ganor, E.; Gladstein, V. J. Appl. Meteorol. 1996, 35, 1511.
[9] Crowley, J. N.; Ammann, M.; Cox, R. A.; Hynes, R. G.; Jenkin, M. E.; Mellouki, A.; Rossi, M. J.; Troe, J.; Wallington, T. J. Atmos. Chem. Phys. 2010, 10, 9059.
[10] Adams, J. W.; Rodriguez, D.; Cox, R. A. Atmos. Chem. Phys. 2005, 5, 2679.
[11] Laskin, A.; Gaspar, D. J.; Wang, W. H.; Hunt, S. W.; Cowin, J. P.; Colson, S. D.; Finlayson-Pitts, B. J. Science 2003, 301, 340.
[12] Bauer, S. E.; Mishchenko, M. I.; Lacis, A. A.; Zhang, S.; Perlwitz, J.; Metzger, S. M. J. Geophys. Res.,-Atmos. 2007, 112, D06307.
[13] Deng, C.; Zhuang, G.; Huang, K.; Li, J.; Zhang, R.; Wang, Q.; Liu, T.; Sun, Y.; Guo, Z.; Fu, J. S.; Wang, Z. Atmos. Chem. Phys. 2011, 11, 7319.
[14] Lee, S. H.; Murphy, D. M.; Thomson, D. S.; Middlebrook, A. M. J. Geophys. Res.,-Atmos. 2002, 107, 4003.
[15] Liu, C.; Ma, Q.; Liu, Y.; Ma, J.; He, H. Phys. Chem. Chem. Phys. 2012, 14, 1668.
[16] Wu, L. Y.; Tong, S. R.; Zhou, L.; Wang, W. G.; Ge, M. F. J. Phys. Chem. A 2013, 117, 3972.
[17] Ullerstam, M.; Johnson, M. S.; Vogt, R.; Ljungstrom, E. Atmos. Chem. Phys. 2003, 3, 2043.
[18] Ma, Q.; Liu, Y.; He, H. J. Phys. Chem. A 2008, 112, 6630.
[19] Koretsky, C. M.; Sverjensky, D. A.; Salisbury, J. W.; Daria, D. M. Geochim. Cosmochim. Acta 1997, 61, 2193.
[20] Glisenti, A. J. Chem. Soc.-Faraday Trans. 1998, 94, 3671.
[21] Busca, G.; Lamotte, J.; Lavalley, J. C.; Lorenzelli, V. J. Am. Chem. Soc. 1987, 109, 5197.
[22] Busca, G.; Lorenzelli, V. J. Catal. 1980, 66, 155.
[23] Martin, M. A.; Childers, J. W.; Palmer, R. A. Appl. Spectrosc. 1987, 41, 120.
[24] Low, M. J. D.; Goodsel, A. J.; Takezawa, N. Environ. Sci. Technol. 1971, 5, 1191.
[25] Babaeva, M. A.; Tsyganenko, A. A.; Filimonov, V. N. Kinet. Catal. 1984, 25, 787.
[26] Nickless, G. Inorganic Sulfur Chemistry, Elsevier, New York, 1968.
[27] Wu, L. Y.; Tong, S. R.; Wang, W. G.; Ge, M. F. Atmos. Chem. Phys. 2011, 11, 6593.
/
| 〈 |
|
〉 |