还原橙3衍生物及其聚合物光伏性能的研究
收稿日期: 2014-11-14
网络出版日期: 2015-01-26
基金资助
项目受中央高校基本科研业务费(No. GK200902008)资助.
Synthesis and Characterization of Orange 3 Derivatives as Photoelectric Materials
Received date: 2014-11-14
Online published: 2015-01-26
Supported by
Project supported by the Fundamental Research Funds for the Central Universities (No. GK200902008).
还原橙3具有稠环结构, 但是其在许多有机溶剂中的不溶性阻碍其作为光伏材料的使用. 对还原橙3进行修饰得到还原橙3的衍生物4,10-双(4-己基-2-噻吩基)-6,12-双(二氰基亚乙烯基)二氢化蒽并蒽(TCVA), 对TCVA的光电性能进行研究, 结果表明, TCVA在紫外-可见光区有较强的吸收, 循环伏安法表明TCVA的HOMO和LUMO能级分别为-6.04和-4.42 eV, 将其与P3HT共混制备太阳能电池, 其效率为0.3%. 将还原橙3衍生物作为受体单元制备D-A结构的给体聚合物聚4,10-双(4-己基-2-噻吩基)-6,12-双(二氰基亚乙烯基)二氢化蒽并蒽连2,6-双(三甲基锡)-4,4-二(2-乙基己基)二噻吩并[3,2-b:2',3'-d]噻咯(PTCVADTS), 该聚合物有非常窄的带隙0.94 eV, 但是由于其LUMO能级较受体材料(6,6)-苯基-C61(71)-丁酸甲酯(PCBM)的LUMO能级小, 阻碍了激子的分离, 使电池器件的效率很低.
杨瑞 , 蔡雪刁 , 丁黎明 . 还原橙3衍生物及其聚合物光伏性能的研究[J]. 化学学报, 2015 , 73(3) : 281 -288 . DOI: 10.6023/A14110781
Due to poorly solubility of the fused ring compound 4,10-dibromoanthanthrone (VAT Orange 3) in common organic solvents, its application as optoelectronic material was hindered. Here, the soluble compound 4,10-bis(4-hexyl-2-thienyl)- 6,12-bis(dicyanovinylene)dihydroanthanthrene (TCVA) was successfully synthesized by introducing alkyl-thiophenyl and cyano groups into VAT Orange 3 compound by Still coupling and Knoevenagel reaction. The properties of TCVA were investigated. The UV-vis spectrum indicated that TCVA showed strong absorbance in the solar spectrum. The TCVA exhibited lower LUMO energy level (-4.42 eV), which was comparable with fullerene acceptor material PCBM (-4.2 eV). The solar cell device ITO/ZnO/P3HT:TCVA/MoO3/Ag based on TCVA as acceptor and P3HT as donor material was fabricated. The power conversion efficiency (PCE) of 0.3% was achieved for acceptor TCVA with open-circuit voltage (Voc) of 0.22 V, short circuit current (Jsc) of 3.61 mA·cm-2 and fill factor (FF) of 37%. The solar cell based on TCVA achieved lower efficiency, maybe due to the lower LUMO energy level of TCVA and small difference of energy level (0.75 eV) between P3HT HOMO and TCVA LUMO. A lower LUMO energy level may lead to a lower open circuit voltage (Voc), since Voc is proportional to the energy level difference between the donor HOMO and acceptor LUMO. The donor polymer ploy[4,10-bis(4-hexyl-5-bromine-2-thienyl)-6,12-bis(dicyanovinylene)dihydroanthanthrene]-alt-2,6-bis(trimethyltin)-4,4-bis(2-ethylhexyl) two-thieno[3,2-b:2',3'-d]silole (PTCVADTS) with TCVA as the acceptor unit were synthesized and characterized. The polymer PTCVADTS showed good light-absorption properties, thermal stability, deep HOMO level (-5.33 eV), and low band gap (0.94 eV). Solar cell device ITO/PEDOT:PSS/ PTCVADTS:PC61BM/Ca/Al based on PTCVADTS as donor achieved an open-circuit voltage of 0.31 V and PCE of 0.018%. Compared with the LUMO level of acceptor (-4.2 eV), the lower LUMO level of donor (-4.39 eV) hindered the electron transport from donor to acceptor, which resulted in lower efficiency. Vat Orange 3 with large flat structure can expand conjugated system, which broadens the absorption. Further reducing the number of cyano group or introducing of other weaker electron withdrawing group may get results applauded.
[1] (a) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.
(b) Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15.
(c) Jorgensen, M.; Norrman, K.; Krebs, F. C. Solar Energy Mater. Solar Cells 2008, 92, 686.
(d) Thompson, B. C.; Frechet, J. M. Angew. Chem., Int. Ed. 2008, 47, 58.
(e) Cao, J.; Zhang, W.; Xiao, Z.; Liao, L.; Zhu, W.; Zuo, Q.; Ding, L. Macromolecules 2012, 45, 1710.
(f) Li, Z.; Li, X.; Li, J.; Hu, Y. Chin. J. Org. Chem. 2013, 33, 891. (李战强, 李祥高, 李健, 胡雅琴, 有机化学, 2013, 33, 891.)
[2] (a) Fu, Y.; Wang, F.; Zhang, Y.; Fang, X.; Lai, W.; Huang, W. Acta Chim. Sinica 2014, 72, 158. (付钰, 王芳, 张燕, 方旭, 赖文勇, 黄维, 化学学报, 2014, 72, 158.)
(b) Li, X.; Zhao, B.; Cao, Z.; Shen, P.; Tan, S. Acta Chim. Sinica 2012, 70, 2433. (李新炜, 赵斌, 曹镇财, 沈平, 谭松庭, 化学学报, 2012, 70, 2433.)
[3] (a) Cheng, Y.; Yang, S.; Hsu, C. Chem. Rev. 2009, 109, 5868.
(b) Yuan, Y.; Yan, Z. J.; Ren, H.; Liu, Q. Y.; Zhu, G. S.; Sun, F. X. Acta Chim. Sinica 2012, 70, 1446. (元野, 闫卓君, 任浩, 刘青英, 朱广山, 孙福兴, 化学学报, 2012, 70, 1446.)
(c) Zhao, L.; Jiu, Y.; Wang, J.; Zhang, X.; Lai, W.; Huang, W. Acta Chim. Sinica 2013, 71, 1248. (赵玲玲, 酒元达, 王建云, 张新稳, 赖文勇, 黄维, 化学学报, 2013, 71, 1248.)
[4] (a) Zhang, M.; Guo, X.; Li, Y. Macromolecules 2011, 44, 8798.
(b) Huo, L.; Ye, L.; Wu, Y.; Li, Z.; Guo, X.; Zhang, M.; Zhang, S.; Hou, J. Macromolecules 2012, 45, 6923.
(c) Saadeh, H. A.; Lu, L.; He, F.; Bullock, J. E.; Wang, W.; Carsten, B.; Yu, L. ACS Macro Lett. 2012, 1, 361.
[5] Chen, C. P.; Chan, S. H.; Chao, T. C.; Ting, C.; Ko, B. T. J. Am. Chem. Soc. 2008, 130, 12828.
[6] Chang, C. Y.; Cheng, Y. J.; Hung, S. H.; Wu, J. S.; Kao, W. S.; Lee, C. H.; Hsu, C. S. Adv. Mater. 2012, 24, 549.
[7] Xu, Y. X.; Chueh, C. C.; Yip, H. L.; Ding, F. Z.; Li, Y. X.; Li, C. Z.; Li, X.; Chen, W. C.; Jen, A. K. Y. Adv. Mater. 2012, 24, 6356.
[8] He, F.; Wang, W.; Chen, W.; Xu, T.; Darling, S. B.; Strzalka, J.; Liu, Y.; Yu, L. J. Am. Chem. Soc. 2011, 133, 3284.
[9] Schroeder, B. C.; Huang, Z.; Ashraf, R. S.; Smith, J.; Angelo, P. D.; Watkins, S. E.; Anthopoulos, T. D.; Durrant, J. R.; McCulloch, I. Adv. Funct. Mater. 2012, 22, 1663.
[10] Zheng, Q.; Jung, B. J.; Sun, J.; Katz, H. E. J. Am. Chem. Soc. 2010, 132, 5394.
[11] He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nat. Photonics. 2012, 6, 593.
[12] Son, H. J.; Lu, L.; Chen, W.; Xu, T.; Zheng, T.; Carsten, B.; Strzalka, J.; Darling, S. B.; Chen, L. X.; Yu, L. Adv. Mater. 2013, 25, 838.
[13] Wu, J. S.; Cheng, Y. J.; Dubosc, M.; Hsieh, C. H.; Chang, C. Y.; Hsu, C. S. Chem. Commun. 2010, 46, 3259.
[14] (a) Perez, M. D.; Borek, C.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2009, 131, 9281.
(b) Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789.
(c) Reese, M. O.; Nardes, A. M.; Rupert, B. L.; Larsen, R. E.; Olson, D. C.; Lloyd, M. T.; Shaheen, S. E.; Ginley, D. S.; Rumbles, G.; Kopidakis, N. Adv. Funct. Mater. 2010, 20, 3476.
[15] (a) Anthony, J. E.; Facchetti, A.; Heeney, M.; Marder, S. R.; Zhan, X. Adv. Mater. 2010, 22, 3876.
(b) Mishra, A.; Bauerle, P. Angew. Chem., Int. Ed. 2012, 51, 2020.
[16] (a) Ando, S.; Nishida, J.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. J. Am. Chem. Soc. 2005, 127, 5336;
(b) Baek, N. S.; Hau, K.; Yip, H. L.; Acton, O.; Chen, K. S.; Jen, A. K. Y. Chem. Mater. 2008, 20, 5734.
[17] Giguere, J. B.; Verolet, Q.; Morin, J. F. Chem. Eur. J. 2013, 19, 372.
[18] Bures, F.; Schweizer, W. B.; Boudon, C.; Gisselbrecht, J. P.; Gross, M.; Diederich, F. Eur. J. Org. Chem. 2008, 6, 994.
[19] Zhong, H. L.; Li, Z. Deledalle, F.; Durrant, J. R.; Heeney, M. J. Am. Chem. Soc. 2013, 135, 2040.
[20] Cao, J. M.; Zhang, W.; Liu, Y.; Xiao, Z.; Zhu, W. G.; Zuo, Q. Q.; Ding, L. M. Macromolecules 2012, 45, 1710.
[21] Fernandes, J. A.; Morisaki, Y.; Chujo, Y. Polym. J. 2011, 43, 733.
[22] (a) He, Y.; Chen, H.; Hou, J.; Li, Y. J. Am. Chem. Soc. 2010, 132, 1377.
(b) Burkhart, B.; Khlyabich, P. P.; Thompson, B. C. Macromolecules 2012, 45, 3740.
[23] Winder, C.; Matt, G.; Hummelen, J. C.; Janssen, R. A. J.; Sariciftci, N. S.; Brabec, C. J. Thin Solid Films 2002, 403, 373.
[24] Meskers, S. C. J.; Hubner, J.; Oestreich, M.; Bässler, H. J. Phys. Chem. B 2001, 105, 9139.
[25] Pao, Y,; Chen, Y.; Cheng, S.; Lai, Y.; Huang, W.; Cheng, J. Org. Lett. 2014, 16, 5424.
[26] Zou, W. W.; Liu, Y.; Jia, Q. M.; Ge, Z. Y. Chin. J. Org. Chem. 2013, 33, 1522. (邹文武, 刘颖, 贾庆明, 葛子义, 有机化学, 2013, 33, 1522.)
[27] Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374.
[28] Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109, 5868.
[29] Thompson, B. C.; Frechet, J. M. J. Angew. Chem., Int. Ed. 2008, 47, 58.
/
〈 |
|
〉 |