研究论文

基于单独MBA凝胶纤维的RAFT聚合制备聚合物微米管

  • 张亚清 ,
  • 唐黎明 ,
  • 李麒
展开
  • a 清华大学化工系 先进材料教育部重点实验室 北京 100084;
    b 北京航空材料研究院 先进高温结构材料重点实验室 北京 100095

收稿日期: 2014-12-03

  网络出版日期: 2015-01-29

基金资助

项目受国家自然科学基金(Nos. 21174079, 20874055)和国家973计划(No. 2014CB932202)资助.

Preparation of Polymer Microtubes via RAFT Polymerization of Sole MBA Xerogel Fibers

  • Zhang Yaqing ,
  • Tang Liming ,
  • Li Qi
Expand
  • a Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
    b Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China

Received date: 2014-12-03

  Online published: 2015-01-29

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21174079, 20874055) and the 973 Program (No. 2014CB932202).

摘要

研究凝胶形成温度对N,N'-亚甲基双丙烯酰胺(MBA)凝胶纤维尺寸的影响, 发现凝胶纤维平均直径随着凝胶形成温度的降低而降低, 在-25 ℃下可得到平均直径为1.1 μm的小尺寸凝胶纤维. 在不加共聚单体条件下, 以1.1 μm小尺寸MBA纤维为模板和反应单体, 通过可逆加成断裂链转移(RAFT)自由基聚合, 以较高收率得到形貌规整并有一定自支撑能力的聚合物微米管. 研究各种反应条件对聚合反应的影响, 结果表明RAFT试剂用量、引发剂用量及反应温度都会影响产物形貌及收率. 采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和红外光谱仪表征了聚合物微米管的微观形貌和组成, 热失重分析表明产物具有很高的耐热性能.

本文引用格式

张亚清 , 唐黎明 , 李麒 . 基于单独MBA凝胶纤维的RAFT聚合制备聚合物微米管[J]. 化学学报, 2015 , 73(2) : 126 -130 . DOI: 10.6023/A14120836

Abstract

The influence of gelation temperature on the size of MBA xerogel fibers was studied. The results indicated that the average diameter of MBA fibers became smaller as the decrease of gelation temperature, and the MBA fibers with average diameter of 1.1 μm were obtained at gelation temperature of -25 ℃. Without comonomer, the small sized MBA fibers with diameter of 1.1 μm were used as both templates and monomer source for preparing polymer microtubes via reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer tubes with well-shaped morphology and self-supporting ability were obtained in relatively high yield. The influence of various reaction conditions on the polymerization was investigated, which revealed that the amount of RAFT reagent, the amount of initiator and reaction temperature could affect both the morphology and the yield of the products. The morphology and composition of polymer microtubes were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and infrared spectrometer, respectively. The thermogravimetric analysis indicated high thermal stability of the product.

参考文献

[1] Hosokawa, K.; Sato, K.; Ichikawa, N.; Maeda, M. Lab Chip 2004, 4, 181.
[2] Kuralay, F.; Sattayasamitsathit, S.; Gao, W.; Uygun, A.; Katzenberg, A.; Wang, J. J. Am. Chem. Soc. 2012, 134, 15217.
[3] Xiang, Z.; Wang, H.; Pant, A.; Pastorin, G.; Lee, C. Biomicrofluidics 2013, 7, 26502.
[4] Pertici, G.; Maccagnan, S.; Mueller, M.; Rossi, F.; Daniele, F.; Tunesi, M.; Perale, G. J. Appl. Biomater. Biomech. 2008, 6, 186.
[5] Gao, W.; Sattayasamitsathit, S.; Uygun, A.; Pei, A.; Ponedal, A.; Wang, J. Nanoscale 2012, 4, 2447.
[6] Cichocki, F. R.; Chen, G.; Zhou, J.; Deng, M. Mater. Sci. Eng. C 2008, 28, 331.
[7] Hopkins, A. R.; Lipeles, R. A.; Kao, W. H. Thin Solid Films 2004, 447-448, 474.
[8] Zussman, E.; Yarin, A. L.; Bazilevsky, A. V.; Avrahami, R.; Feldman, M. Adv. Mater. 2006, 18, 348.
[9] Xiong, S.; Wang, Q.; Xia, H. Synth. Met. 2004, 146, 37.
[10] Zhu, L.; Huang, X.; Tang, X. Macromol. Mater. Eng. 2006, 291, 714.
[11] (a) Kumar, K.; Nandan, B.; Luchnikov, V.; Gowd, E. B.; Stamm, M. Langmuir 2009, 25, 7667.
(b) Kumar, K.; Nandan, B.; Luchnikov, V.; Simon, F.; Vyalikh, A.; Scheler, U.; Stamm, M. Chem. Mater. 2009, 21, 4282.
(c) Luchnikov, V.; Stamm, M. Physica E 2007, 37, 236.
[12] McCarthy, C. P.; McGuinness, N. B.; Carolan, P. B.; Fox, C. M.; Alcock-Earley, B. E.; Breslin, C. B.; Rooney, A. D. Macromolecules 2013, 46, 1008.
[13] Luchnikov, V.; Stamm, M.; Akhmadaliev, C.; Bischoff, L.; Schmidt, B. J. Micromech. Microeng. 2006, 16, 1602.
[14] Kohli, P.; Martin, C. R. J. Drug Delivery Sci. Technol. 2005, 15, 49.
[15] (a) Li, Q.; Tang, L.; Xia, Y.; Li, B. Macromol. Rapid Commun. 2013, 34, 185.
(b) Li, Q.; Tang, L. M.; Jiao, Y. Acta Polym. Sin. 2014, 1135. (李麒, 唐黎明, 焦阳, 高分子学报, 2014, 1135.)
(c) Li, Q.; Tang, L. M.; Liang, Y. Chem. J. Chin. Univ. 2013, 34, 1542. (李麒, 唐黎明, 梁勇, 高等学校化学学报, 2013, 34, 1542.)
[16] Xia, Y.; Wang, Y.; Chen, K.; Tang, L. Chem. Commun. 2008, 5113.
[17] (a) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, 5559.
(b) Hawthorne, D. G.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1999, 32, 5457.
[18] Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, S. H. Macromolecules 1999, 32, 6977.
[19] Aoyagi, N.; Endo, T. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 3702.

文章导航

/