双极界面聚合物膜燃料电池I:膜电极构型
收稿日期: 2014-12-05
网络出版日期: 2015-01-29
基金资助
项目受国家自然科学基金(No. U1137602), 北京市自然科学基金(No. 2132051), 国家科技部863项目(No. 2013AA031902), 北京航空航天大学基本科研业务费-博士研究生创新基金(No. YWF-14-YJSY-047)资助.
Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell I:Structure of Membrane Electrode Assembly
Received date: 2014-12-05
Online published: 2015-01-29
Supported by
Project supported by the National Natural Science Foundation of China (No. U1137602), National Science Foundation of Beijing (No. 2132051), National High Technology Research and Development Program of China (No. 2013AA031902), The Innovation Foundation of BUAA for PhD Graduates (No. YWF-14-YJSY-047).
双极燃料电池是一类新型的具有酸碱双极反应界面的聚合物膜燃料电池, 其潜在的优势在于: (1)在碱性催化层中可利用非贵金属催化剂, 降低电池成本; (2)双极反应界面上的水生成/解离反应可调节电池的水传输特性, 形成电池的自增湿机制. 尽管双极燃料电池理论上具有如此显著的优势, 但其研究还处于起步阶段, 尚缺乏大量有力的理论和实验依据. 通过构建四种不同界面结构的双极膜电极, 系统地研究了双极界面对电池性能的影响. 结果表明, 仅含有水生成界面的双极燃料电池构型最有利于电池输出性能的提升, 并且成功利用这一构型验证了双极燃料电池自增湿稳定放电的特性. 双极燃料电池的发展将有力的推动便携式自增湿燃料电池的进步.
彭思侃 , 徐鑫 , 张劲 , 刘祎阳 , 卢善富 , 相艳 . 双极界面聚合物膜燃料电池I:膜电极构型[J]. 化学学报, 2015 , 73(2) : 137 -142 . DOI: 10.6023/A14120842
Although considered as the most viable approach for mobile powers, traditional polymer electrolyte membrane fuel cells require burdensome humidification and water management systems. The bipolar fuel cell (BPFC) or hybrid membrane fuel cell won noticeable interest because its potential self-humidification. BPFC is a novel polyelectrolyte membrane fuel cell involving both anion and cation polyelectrolyte and a new kind of acidic-alkaline bipolar reaction interface was presented in the cell. The potential advantages of a BPFC are twofold: (a) the alkaline cathode with inherently faster kinetics that allows use of non-platinum catalysts, thereby significantly reducing the total cost of a fuel cell; (b) the water generation or dissociation reaction takes place at the bipolar interface providing the possibility to devise self-humidification over the entire cell. Despite the BPFC have such attractive potentials, the BPFC developed to date had not yet demonstrated these feature and have operated at very modest power densities. As the development of BPFC is still in their infancy, it still remains uncertain how the bipolar interface works and effects in the cell. In the present study, four types of bipolar membrane electrode configuration containing two or one kind of bipolar interface, either water generation or dissociation interfaces, were fabricated to evaluate the effect of bipolar interface on the cell output performance. Results show that the preferred configuration with only one bipolar interface generating water can benefit the cell output. The reason could be the faster water formation reaction kinetics in this kind of bipolar interface and lower interfacial potential loss with only one bipolar interface. Within this preferred membrane electrode configuration, we have realized and demonstrated the BPFC that operate under completely self-humidifying conditions for prolonged periods successfully. As we can see, optimization of the membrane electrode configurations and further advances in fabricating bipolar interface would open the way for the development of practical self-regulating portable fuel cells.
[1] Bi, H. P.; Chen, S. W.; Wang, J. L.; Zhang, X.; Gao, Z. L.; Zhang, S.; Tao, Y. Y.; Wang, L. J. Chem. J. Chin. Univ.-Chin. 2009, 30(11), 2306. (毕慧平, 陈守文, 王佳力, 张轩, 高智琳, 张莎, 陶应勇, 王连军, 高等学校化学学报, 2009, 30(11), 2306.)
[2] Liu, Y.-L.; Su, Y.-H.; Chang, C.-M.; Suryani; Wang, D.-M.; Lai, J.-Y. J. Mater. Chem. 2010, 20(21), 4409.
[3] Hu, H.; Xiao, M.; Wang, S. J.; Shen, P. K.; Meng, Y. Z. Fuel Cells 2011, 11(3), 353.
[4] Jiao, K.; Li, X. Prog. Energy Combust. Sci. 2011, 37(3), 221.
[5] Fang, B.; Chaudhari, N. K.; Kim, M. S.; Kim, J. H.; Yu, J. S. J. Am. Chem. Soc. 2009, 131(42), 15330.
[6] Li, B.; Yan, Z. Y.; Higgins, D. C.; Yang, D. J.; Chen, Z. W.; Ma, J. X. J. Power Sources 2014, 262, 488.
[7] Wang, X. Z.; Fu, R.; Zhen, J. S.; Ma, J. X. Acta Phys.-Chim. Sin. 2011, (08), 1875. (王喜照, 符蓉, 郑俊生, 马建新, 物理化学学报, 2011, (08), 1875.)
[8] Lü, H. F.; Cheng, N. C.; Mu, S. C.; Pan, M. Acta Chim. Sinica 2009, 67(14), 1680. (吕海峰, 程年才, 木士春, 潘牧, 化学学报, 2009, 67(14), 1680.)
[9] Wang, A.-L.; Sun, Y.; Liang, Z.-X.; Chen, Q.-L. Acta Chim. Sinica 2009, 67(22), 2554. (王爱丽, 孙瑜, 梁志修, 陈胜利, 化学学报, 2009, 67(22), 2554.)
[10] Lu, S. F.; Pan, J.; Huang, A. B.; Zhuang, L.; Lu, J. T. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(52), 20611.
[11] Pan, J.; Chen, C.; Zhuang, L.; Lu, J. T. Acc. Chem. Res. 2012, 45(3), 473.
[12] Pan, J.; Chen, C.; Li, Y.; Wang, L.; Tan, L.; Li, G.; Tang, X.; Xiao, L.; Lu, J.; Zhuang, L. Energy Environ. Sci. 2014, 7, 354.
[13] Huo, S.; Deng, H.; Chang, Y.; Jiao, K. Int. J. Hydrogen Energy 2012, 37(23), 18389.
[14] Deng, H.; Huo, S.; Chang, Y.; Zhou, Y.; Jiao, K. Int. J. Hydrogen Energy 2013, 38(15), 6509.
[15] Gulzow, E. Fuel Cells 2004, 4(4), 251.
[16] Schulze, A.; Gulzow, E. J. Power Sources 2004, 127(1~2), 252.
[17] Merle, G.; Wessling, M.; Nijmeijer, K. J. Membr. Sci. 2011, 377(1~2), 1.
[18] Liu, H.; Wang, S. L.; Jiang, L. H.; Sun, G. Q. Scientia Sinica Chimica 2011, 41(12), 1857. (柳鹤, 王素力, 姜鲁华, 孙公权, 中国科学: 化学, 2011, 41(12), 1857.)
[19] Lin, B. C.; Qiu, L. H.; Lu, J. M.; Yan, F. Chem. Mater. 2010, 22(24), 6718.
[20] Tang, D.; Pan, J.; Lu, S.; Zhuang, L.; Lu, J. Sci. China Chem. 2010, 53(02), 357.
[21] Ünlü, M.; Zhou, J. F.; Kohl, P. A. J. Phys. Chem. C 2009, 113(26), 11416.
[22] Ünlü, M.; Zhou, J.; Kohl, P. A. Fuel Cells 2010, 10(1), 54.
[23] Ünlü, M.; Zhou, J.; Kohl, P. A. Angew. Chem., Int. Ed. 2010, 49(7), 1299.
[24] Peng, S.; Lu, S.; Zhang, J.; Sui, P.-C.; Xiang, Y. Phys. Chem. Chem. Phys. 2013, 15(27), 11217.
/
〈 |
|
〉 |