钙钛矿太阳能电池:器件设计和I-V滞回现象
收稿日期: 2014-09-30
网络出版日期: 2015-02-04
基金资助
项目受国家自然科学基金(Nos. 51272126, 51162007)和科技部国际科技合作项目(Nos. 2013DFG53010, 2015DFG52690)资助.
Perovskite Solar Cells: Device Construction and I-V Hysteresis
Received date: 2014-09-30
Online published: 2015-02-04
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 51272126, 51162007) and the China-Israel Scientific and Strategic Research Fund (Nos. 2013DFG53010, 2015DFG52690).
张烨 , 姚志博 , 林仕伟 , 李建保 , 林红 . 钙钛矿太阳能电池:器件设计和I-V滞回现象[J]. 化学学报, 2015 , 73(3) : 219 -224 . DOI: 10.6023/A14090678
Research into organic-inorganic metal halide perovskite solar cells has swiftly gained momentum since the seminal work initiated by Kojima et al. in 2009, and already has delivered impressive accredited power conversion efficiency of over 17.9% within 5 years. In much previously reported research, the I-V characteristics was found to vary to a great extent with sweeping direction, which is known as I-V hysteresis. Further investigations have identified that the I-V hysteresis is also related to scanning speed, starting voltage and light soaking. We correlate such a phenomenon to different device structures and several possible causes were analyzed herein. A reliable test to obtain valid power conversion efficiency, which is to hold the device under a maximum power voltage is recommended for future research regarding this newly emerged technology.
Key words: perovskite; solar cells; inverted structure; I-V measurement; hysteresis
[1] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.
[2] Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. Nanoscale 2011, 3, 4088.
[3] Park, N.-G. J. Phys. Chem. Lett. 2013, 4, 2423.
[4] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.
[5] Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Energy Environ. Sci. 2013, 6, 1739.
[6] Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
[7] Liu, D.; Kelly, T. L. Nat. Photonics 2014, 8, 133.
[8] Mitzi, D. B.; Chondroudis, K.; Kagan, C. IBM J. Res. Development 2001, 45, 29.
[9] Kagan, C.; Mitzi, D.; Dimitrakopoulos, C. Science 1999, 286, 945.
[10] Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J. Energy Environ. Sci. 2014, 7, 2619.
[11] Unger, E. L.; Hoke, E. T.; Bailie, C. D.; Nguyen, W. H.; Bowring, A. R.; Heumuller, T.; Christoforo, M. G.; McGehee, M. D. Energy Environ. Sci. 2014, 7, 3690.
[12] Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542.
[13] Bi, D.; Moon, S.-J.; Haggman, L.; Boschloo, G.; Yang, L.; Johansson, E. M. J.; Nazeeruddin, M. K.; Gratzel, M.; Hagfeldt, A. RSC Adv. 2013, 3, 18762.
[14] Wang, J. T.-W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander- Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J.; Nicholas, R. J. Nano Lett. 2013, 14, 724.
[15] Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Nature 2015, 517, 476.
[16] Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982.
[17] Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Grätzel, M.; Han, H. Science 2014, 345, 295.
[18] Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Nat. Commun. 2013, 4, 2885.
[19] .Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Adv. Funct. Mater. 2014, 24, 151.
[20] Gratzel, M. Nat. Mater. 2014, 13, 838.
[21] Laban, W. A.; Etgar, L. Energy Environ. Sci. 2013, 6, 3249.
[22] .Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2012, 134, 17396.
[23] Hao, F.; Stoumpos, C. C.; Liu, Z.; Chang, R. P. H.; Kanatzidis, M. G. J. Am. Chem. Soc. 2014, 136, 16411.
[24] Shi, J.; Dong, J.; Lv, S.; Xu, Y.; Zhu, L.; Xiao, J.; Xu, X.; Wu, H.; Li, D.; Luo, Y.; Meng, Q. Appl. Phys. Lett. 2014, 104, 063901.
[25] Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Nat. Commun. 2013, 4, 2761.
[26] Barrows, A. T.; Pearson, A. J.; Kwak, C. K.; Dunbar, A. D. F.; Buckley, A. R.; Lidzey, D. G. Energy Environ. Sci. 2014, 7, 2944.
[27] Chiang, C.-H.; Tseng, Z.-L.; Wu, C.-G. J. Mater. Chem. A 2014, 2, 15897.
[28] You, J.; Hong, Z.; Yang, Y.; Chen, Q.; Cai, M.; Song, T.-B.; Chen, C.-C.; Lu, S.; Liu, Y.; Zhou, H. ACS Nano 2014, 8, 1674.
[29] Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.-W.; Wojciechowski, K.; Zhang, W. J. Phys. Chem. Lett. 2014, 5, 1511.
[30] Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. ACS Nano 2014, 8, 9815.
[31] Tiwana, P.; Docampo, P.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2012, 5, 9566.
[32] Yang, L.; Xu, B.; Bi, D.; Tian, H.; Boschloo, G.; Sun, L.; Hagfeldt, A.; Johansson, E. M. J. J. Am. Chem. Soc. 2013, 135, 7378.
[33] del Cueto, J. A.; Deline, C. A.; Albin, D. S.; Rummel, S. R.; Anderberg, A. 2009.
[34] Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. Nat. Mater. 2015, 14, 193.
[35] Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Nat. Commun. 2014, 5, 5784.
[36] Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897.
[37] Abate, A.; Saliba, M.; Hollman, D. J.; Stranks, S. D.; Wojciechowski, K.; Avolio, R.; Grancini, G.; Petrozza, A.; Snaith, H. J. Nano Lett. 2014, 14, 3247.
[38] Yin, W.-J.; Shi, T.; Yan, Y. Appl. Phys. Lett. 2014, 104, 063903.
[39] Kim, J.; Lee, S.-H.; Lee, J. H.; Hong, K.-H. J. Phys. Chem. Lett. 2014, 5, 1312.
[40] Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341.
[41] Juarez-Perez, E. J.; Sanchez, R. S.; Badia, L.; Garcia-Belmonte, G.; Kang, Y. S.; Mora-Sero, I.; Bisquert, J. J. Phys. Chem. Lett. 2014, 5, 2390.
[42] Frost, J. M.; Butler, K. T.; Walsh, A. APL Mater. 2014, 2, 081506.
[43] Street, R. A.; Ready, S. E.; Van Schuylenbergh, K.; Ho, J.; Boyce, J. B.; Nylen, P.; Shah, K.; Melekhov, L.; Hermon, H. J. Appl. Phys. 2002, 91, 3345.
[44] Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584.
[45] Cochran, W. Adv. Phys. 1960, 9, 387.
[46] Dualeh, A.; Moehl, T.; Tétreault, N.; Teuscher, J.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. ACS Nano 2013, 8, 362.
[47] Kutes, Y.; Ye, L.; Zhou, Y.; Pang, S.; Huey, B. D.; Padture, N. P. J. Phys. Chem. Lett. 2014, 5, 3335.
[48] Kim, H.-S.; Park, N.-G. J. Phys. Chem. Lett. 2014, 5, 2927.
[49] Zimmermann, E.; Ehrenreich, P.; Pfadler, T.; Dorman, J. A.; Weickert, J.; Schmidt-Mende, L. Nat. Photonics 2014, 8, 669.
/
| 〈 |
|
〉 |