综述

钙钛矿太阳能电池:器件设计和I-V滞回现象

  • 张烨 ,
  • 姚志博 ,
  • 林仕伟 ,
  • 李建保 ,
  • 林红
展开
  • a 清华大学材料学院 新型陶瓷与精细工艺国家重点实验室 北京 100084;
    b 海南大学材料与化工学院 海南省硅锆钛资源综合开发与利用重点实验室 海口 570228

收稿日期: 2014-09-30

  网络出版日期: 2015-02-04

基金资助

项目受国家自然科学基金(Nos. 51272126, 51162007)和科技部国际科技合作项目(Nos. 2013DFG53010, 2015DFG52690)资助.

Perovskite Solar Cells: Device Construction and I-V Hysteresis

  • Zhang Ye ,
  • Yao Zhibo ,
  • Lin Shiwei ,
  • Li Jianbao ,
  • Lin Hong
Expand
  • a State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
    b Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou, China, 570228

Received date: 2014-09-30

  Online published: 2015-02-04

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51272126, 51162007) and the China-Israel Scientific and Strategic Research Fund (Nos. 2013DFG53010, 2015DFG52690).

摘要

基于染料敏化太阳能电池发展起来的有机-无机杂化钙钛矿太阳能电池经过不到5年的快速发展, 光电转换效率从最初的3.8%提高到了经过认证的17.9%. 但是常用结构的钙钛矿太阳能电池在性能测试过程中的电流-电压(I-V)曲线会随着测试器件扫描方向的不同而明显不同. 该现象被称为I-V滞回现象. 进一步研究发现I-V曲线还与扫描速度、起始测试的偏压值和光照历史明显相关. 本工作结合不同的器件构造, 就可能造成这种I-V滞回现象的不同原因进行了总结和分析, 并对如何获得可靠的光电转换效率的测试方法进行了评述.

本文引用格式

张烨 , 姚志博 , 林仕伟 , 李建保 , 林红 . 钙钛矿太阳能电池:器件设计和I-V滞回现象[J]. 化学学报, 2015 , 73(3) : 219 -224 . DOI: 10.6023/A14090678

Abstract

Research into organic-inorganic metal halide perovskite solar cells has swiftly gained momentum since the seminal work initiated by Kojima et al. in 2009, and already has delivered impressive accredited power conversion efficiency of over 17.9% within 5 years. In much previously reported research, the I-V characteristics was found to vary to a great extent with sweeping direction, which is known as I-V hysteresis. Further investigations have identified that the I-V hysteresis is also related to scanning speed, starting voltage and light soaking. We correlate such a phenomenon to different device structures and several possible causes were analyzed herein. A reliable test to obtain valid power conversion efficiency, which is to hold the device under a maximum power voltage is recommended for future research regarding this newly emerged technology.

参考文献

[1] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.
[2] Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. Nanoscale 2011, 3, 4088.
[3] Park, N.-G. J. Phys. Chem. Lett. 2013, 4, 2423.
[4] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.
[5] Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Energy Environ. Sci. 2013, 6, 1739.
[6] Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
[7] Liu, D.; Kelly, T. L. Nat. Photonics 2014, 8, 133.
[8] Mitzi, D. B.; Chondroudis, K.; Kagan, C. IBM J. Res. Development 2001, 45, 29.
[9] Kagan, C.; Mitzi, D.; Dimitrakopoulos, C. Science 1999, 286, 945.
[10] Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J. Energy Environ. Sci. 2014, 7, 2619.
[11] Unger, E. L.; Hoke, E. T.; Bailie, C. D.; Nguyen, W. H.; Bowring, A. R.; Heumuller, T.; Christoforo, M. G.; McGehee, M. D. Energy Environ. Sci. 2014, 7, 3690.
[12] Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542.
[13] Bi, D.; Moon, S.-J.; Haggman, L.; Boschloo, G.; Yang, L.; Johansson, E. M. J.; Nazeeruddin, M. K.; Gratzel, M.; Hagfeldt, A. RSC Adv. 2013, 3, 18762.
[14] Wang, J. T.-W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander- Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J.; Nicholas, R. J. Nano Lett. 2013, 14, 724.
[15] Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Nature 2015, 517, 476.
[16] Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982.
[17] Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Grätzel, M.; Han, H. Science 2014, 345, 295.
[18] Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Nat. Commun. 2013, 4, 2885.
[19] .Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Adv. Funct. Mater. 2014, 24, 151.
[20] Gratzel, M. Nat. Mater. 2014, 13, 838.
[21] Laban, W. A.; Etgar, L. Energy Environ. Sci. 2013, 6, 3249.
[22] .Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2012, 134, 17396.
[23] Hao, F.; Stoumpos, C. C.; Liu, Z.; Chang, R. P. H.; Kanatzidis, M. G. J. Am. Chem. Soc. 2014, 136, 16411.
[24] Shi, J.; Dong, J.; Lv, S.; Xu, Y.; Zhu, L.; Xiao, J.; Xu, X.; Wu, H.; Li, D.; Luo, Y.; Meng, Q. Appl. Phys. Lett. 2014, 104, 063901.
[25] Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Nat. Commun. 2013, 4, 2761.
[26] Barrows, A. T.; Pearson, A. J.; Kwak, C. K.; Dunbar, A. D. F.; Buckley, A. R.; Lidzey, D. G. Energy Environ. Sci. 2014, 7, 2944.
[27] Chiang, C.-H.; Tseng, Z.-L.; Wu, C.-G. J. Mater. Chem. A 2014, 2, 15897.
[28] You, J.; Hong, Z.; Yang, Y.; Chen, Q.; Cai, M.; Song, T.-B.; Chen, C.-C.; Lu, S.; Liu, Y.; Zhou, H. ACS Nano 2014, 8, 1674.
[29] Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.-W.; Wojciechowski, K.; Zhang, W. J. Phys. Chem. Lett. 2014, 5, 1511.
[30] Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. ACS Nano 2014, 8, 9815.
[31] Tiwana, P.; Docampo, P.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2012, 5, 9566.
[32] Yang, L.; Xu, B.; Bi, D.; Tian, H.; Boschloo, G.; Sun, L.; Hagfeldt, A.; Johansson, E. M. J. J. Am. Chem. Soc. 2013, 135, 7378.
[33] del Cueto, J. A.; Deline, C. A.; Albin, D. S.; Rummel, S. R.; Anderberg, A. 2009.
[34] Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. Nat. Mater. 2015, 14, 193.
[35] Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Nat. Commun. 2014, 5, 5784.
[36] Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897.
[37] Abate, A.; Saliba, M.; Hollman, D. J.; Stranks, S. D.; Wojciechowski, K.; Avolio, R.; Grancini, G.; Petrozza, A.; Snaith, H. J. Nano Lett. 2014, 14, 3247.
[38] Yin, W.-J.; Shi, T.; Yan, Y. Appl. Phys. Lett. 2014, 104, 063903.
[39] Kim, J.; Lee, S.-H.; Lee, J. H.; Hong, K.-H. J. Phys. Chem. Lett. 2014, 5, 1312.
[40] Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341.
[41] Juarez-Perez, E. J.; Sanchez, R. S.; Badia, L.; Garcia-Belmonte, G.; Kang, Y. S.; Mora-Sero, I.; Bisquert, J. J. Phys. Chem. Lett. 2014, 5, 2390.
[42] Frost, J. M.; Butler, K. T.; Walsh, A. APL Mater. 2014, 2, 081506.
[43] Street, R. A.; Ready, S. E.; Van Schuylenbergh, K.; Ho, J.; Boyce, J. B.; Nylen, P.; Shah, K.; Melekhov, L.; Hermon, H. J. Appl. Phys. 2002, 91, 3345.
[44] Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584.
[45] Cochran, W. Adv. Phys. 1960, 9, 387.
[46] Dualeh, A.; Moehl, T.; Tétreault, N.; Teuscher, J.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. ACS Nano 2013, 8, 362.
[47] Kutes, Y.; Ye, L.; Zhou, Y.; Pang, S.; Huey, B. D.; Padture, N. P. J. Phys. Chem. Lett. 2014, 5, 3335.
[48] Kim, H.-S.; Park, N.-G. J. Phys. Chem. Lett. 2014, 5, 2927.
[49] Zimmermann, E.; Ehrenreich, P.; Pfadler, T.; Dorman, J. A.; Weickert, J.; Schmidt-Mende, L. Nat. Photonics 2014, 8, 669.

文章导航

/