研究亮点

自然氧化偶联及其在碳氢功能化反应中的应用

  • 陆庆全 ,
  • 易红 ,
  • 雷爱文
展开
  • 武汉大学化学与分子科学学院 武汉 430072

收稿日期: 2014-12-25

  网络出版日期: 2015-03-04

基金资助

项目受科技部973计划(Nos.2012CB725302,2011CB808600)、国家自然科学基金(Nos.21390400,21272180,21302148)、高等学校博士学科点专项科研基金(No.20120141130002)、教育部长江学者和创新团队发展计划(No.IRT1030)、国家科学技术部基金(No.2012YQ120060)、高等学校学科创新引智计划(111项目)资助.

Autoxidative Coupling and Its Applications to C-H Functionalization

  • Lu Qingquan ,
  • Yi Hong ,
  • Lei Aiwen
Expand
  • College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072

Received date: 2014-12-25

  Online published: 2015-03-04

Supported by

Project supported by the 973 Program(Nos. 2012CB725302, 2011CB808600), the National Natural Science Foundation of China(Nos. 21390400, 21272180, 21302148), and the Research Fund for the Doctoral Program of Higher Education of China(No. 20120141130002) and the Program for Changjiang Scholars and Innovative Research Team in University(No. IRT1030) and the Ministry of Science and Technology of China(No. 2012YQ120060). The Program of Introducing Talents of Discipline to Universities of China(111 Program) is also appreciated.

摘要

氧化偶联作为一种经济、高效的化学键构建模式,在有机合成化学中得到了广泛的应用.近年来, Klussmann、焦宁和霍聪德等课题组通过发展简单、直接的自然氧化偶联反应,成功实现了一些Csp3-H和Csp2-H功能化反应,在该领域中取得了重要进展.我们就他们近年来在该领域的研究进展作一亮点评述.

本文引用格式

陆庆全 , 易红 , 雷爱文 . 自然氧化偶联及其在碳氢功能化反应中的应用[J]. 化学学报, 2015 , 73(12) : 1245 -1249 . DOI: 10.6023/A14120888

Abstract

As a highly economic and efficient strategy for chemical bond formation, oxidative coupling has been widely applied in synthetic organic chemistry. Recently, Klussmann, Jiao and Huo et al. groups have successfully achieved the direct functionalization of Csp3-H and Csp2-H bonds through developing simple, elegant autoxidative coupling reactions, which makes a significant progress in this filed. This highlight mainly reviews the recent advances in autoxidative coupling.

参考文献

[1] (a) Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540.
(b) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
(c) Liu, Q.; Zhang, H.; Lei, A. Angew. Chem., Int. Ed. 2011, 50, 10788.
(d) Shi, W.; Liu, C.; Lei, A. Chem. Soc. Rev. 2011, 40, 2761.
(e) Zhang, D.; Qin, Y. Acta Chim. Sinica 2013, 71, 147.(张丹, 秦勇, 化学学报, 2013, 71, 147.)
(f) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677.
[2] (a) Guo, X.-W.; Li, Z.-P.; Li, C.-J. Prog. Chem. 2010, 22, 1434.(郭兴伟, 李志平, 李朝军, 化学进展, 2010, 22, 1434.)
(b) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
[3] Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
[4] Pintér, Á.; Sud, A.; Sureshkumar, D.; Klussmann, M. Angew. Chem., Int. Ed. 2010, 49, 5004.
[5] (a) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588.
(b) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2010, 111, 1293.
[6] Pintér, Á.; Klussmann, M. Adv. Synth. Catal. 2012, 354, 701.
[7] Schweitzer-Chaput, B.; Sud, A.; Pintér, Á.; Dehn, S.; Schulze, P.; Klussmann, M. Angew. Chem., Int. Ed. 2013, 52, 13228.
[8] (a) Liu, L.; Wang, Z.; Fu, X.; Yan, C.-H. Org. Lett. 2012, 14, 5692.
(b) Piscopo, C. G.; Buhler, S.; Sartori, G.; Maggi, R. Catal. Sci. Technol. 2012, 2, 2449.
[9] Ueda, H.; Yoshida, K.; Tokuyama, H. Org. Lett. 2014, 16, 4194.
[10] Zhang, B.; Xiang, S.-K.; Zhang, L. H.; Cui, Y.; Jiao, N. Org. Lett. 2011, 13, 5212.
[11] Xu, Q.-L.; Gao, H.; Yousufuddin, M.; Ess, D. H.; Kürti, L. J. Am. Chem. Soc. 2013, 135, 14048.
[12] Huo, C.; Yuan, Y.; Wu, M.; Jia, X.; Wang, X.; Chen, F.; Tang, J. Angew. Chem., Int. Ed. 2014, 53, 13544.
[13] Kumar, S.; Rathore, V.; Verma, A.; Prasad, C. D.; Kumar, A.; Yadav, A.; Jana, S.; Sattar, M.; Meenakshi; Kumar, S. Org. Lett. 2015, 17, 82.

文章导航

/