研究亮点

配位导向的分子内C(sp3)-H键胺化反应构建含氮杂环的新进展

  • 赵金钵 ,
  • 张前
展开
  • 东北师范大学化学学院 长春 130024

收稿日期: 2015-01-25

  网络出版日期: 2015-03-04

基金资助

项目受国家自然科学基金(Nos.21372041,21402025)资助.

Recent Advances in Directed Intramolecular C(sp3)-H Amination Reactions for the Construction of Aza-heterocycles

  • Zhao Jinbo ,
  • Zhang Qian
Expand
  • Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024

Received date: 2015-01-25

  Online published: 2015-03-04

Supported by

Project supported by the the National Natural Science Foundation of China(Nos. 21372041 and 21402025).

摘要

含氮饱和杂环化合物,如β-内酰胺、氮杂环丙烷、四氢吡咯、哌啶及其苯并骨架吲哚啉、四氢喹啉、四氢异喹啉等结构单元是天然产物和药物分子中常见的"优势骨架",在新药的发现中起到了极其重要的作用.配位导向的非活化C(sp3)-H键的直接胺化方法可高效构建C-N键,是C-H键活化反应方法学的重要研究内容之一.本文介绍了近期配位导向的非活化C(sp3)-H键的分子内直接胺化策略构建含氮杂环的新进展,其中包括双齿、单齿和分子内本身的二级胺作为定位基参与的活化模式,探讨了其反应机制、选择性、底物的适用性及其在合成中的应用.

本文引用格式

赵金钵 , 张前 . 配位导向的分子内C(sp3)-H键胺化反应构建含氮杂环的新进展[J]. 化学学报, 2015 , 73(12) : 1235 -1244 . DOI: 10.6023/A15010063

Abstract

Saturated N-heterocycles, such as β-lactam, aziridine, pyrrolidine, piperidine and their benzo-structures indoline, tetrahydroquinoline and tetrahydroisoquinoline, are important "privileged scaffolds" which are of pivotal importance to medicinal chemistry. Intramolecular C-H bond amination reaction has emerged as a straightforward and atom-economical alternative for the synthesis of N-heterocycles. Among the existing C-H amination methodologies, the directed C(sp3)-H amination processes manifested unique reactivity and complementary selectivity profiles in comparison to those of the established methods such as Hoffman-Löffler-Freytag reaction and metal nitrenoid chemistry. These features render directed C(sp3)-H amination an appealing and powerful addition to the amination toolbox available to synthetic chemists. Although this field is still in its infancy, its development has already uncovered fundamental understanding of the reactivity and selectivity patterns of various types of C(sp3)-H bonds, upon which its synthetic applicability was elegantly demonstrated through the synthesis of several natural and artificial chemical entities of high therapeutic relevance. Highlighted herein is the recent important developments in the directing group enabled intramolecular C(sp3)-H amination strategies to construct N-heterocycles, with an emphasis on substrate scope and limitation, selectivity and synthetic applications. The reactions are classified based on the types of directing groups employed. The employment of chelating directing groups compensates entropy loss during catalyst-substrate interaction and enables successful activation of unactivated C(sp3)-H bonds and facile access to azetidines, β-lactams and pyrrolidines via the intermediacy of 5/5 and 5/6 bicyclic metallacycles. Besides palladium catalyst, copper and nickel salts have also been reported to realize similar processes with unique selectivities. Notably, amide directed C(sp3)-H amidation reaction under a novel AgI/Ag redox catalysis furnished the pyrrolidine scaffold via 6-membered metallacycle. It was applied in the efficient construction of the core structures of natural products(-)-codonopsinine and(-)-Martinellic acid in one operation. The use of innate functionality in the substrate as directing group obviates extra installation and removal steps required for C-H activation reactions. Toward this end, catalytic carbonylation and aziridination reactions were developed via the intermediacy of a novel strained 4-membered palladacycle to afford strained aziridines and β-lactams through PdII/PdIV and Pd0/PdII redox pathways, respectively. Taken together, the above developments have opened new avenues toward more efficient and atom-economic synthesis of important N-heterocycles.

参考文献

[1] (a) Collet, F.; Dodd, R. H.; Dauban, P. Chem. Commun. 2009, 5061.
(b) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.
(c) Gephart, R. T. Ⅲ, Warren, T. H. Organometallics 2012, 31, 7728.
(d) Louillat, M.-L.; Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901.
(e) Thansandote, P.; Lautens, M. Chem. Eur. J. 2009, 15, 5874.
(f) Mei, T.-S.; Kou, L.; Ma, S.; Engle, K. M.; Yu, J.-Q. Synthesis 2012, 1778.
(g) Zatolochnaya, O. V.; Gevorgyan, V. Nature Chem. 2014, 6, 661.
(h) Wang, Y.; Cheng, G.; Cui, X. Chin. J. Org. Chem. 2012, 32, 2018.(王勇, 程国林, 崔秀玲, 有机化学, 2012, 32, 2018.)
(i) Xu, Z.; Jiao, N. Scientia Sinica Chim. 2013, 43, 1123.(许泽君, 焦宁, 中国科学, 2013, 43, 1123.)
(j) Zhang, Q.; Lü, Y.; Li, Y.; Xiong, T.; Zhang, Q. Acta Chim. Sinica 2014, 72, 1139.(张茜, 吕允贺, 李燕, 熊涛, 张前, 化学学报, 2014, 72, 1139.)
(k) Crabtree, R. H. J. Organomet. Chem. 2004, 689, 4083.
(l) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. Eur. J. 2010, 16, 2654.
(m) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
(n) C-H Activation, Eds.:Yu, J.-Q.; Shi, Z.-J., in Topics in Current Chemistry, Vol. 292, Springer, 2010.
(o) Zhang, M.; Zhang, A.-Q.; Peng, Y. J. Organomet. Chem. 2013, 723, 224.
(p) Dastbaravardeh, N.; Christakakou, M.; Haider, M.; Schnürch, M. Synthesis 2014, 46, 1421.
(q) Gong, H.; Yang, Y.; Kuang, C. Prog. Chem. 2014, 26, 592.(龚浩, 杨义文, 匡春香, 化学进展, 2014, 26, 592.)
(r) Rouquest, G.; Chatani, N. Angew. Chem. Int. Ed. 2013, 52, 11726.
[2] (a) Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1883, 16, 558.
(b) Wolff, M. E. Chem. Rev. 1963, 63, 55;
(c) Francisco, C. G.; Herrera, A. J.; Suarez, E. J. Org. Chem. 2003, 68, 1012, and references cited therein.
[3] (a) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417;
(b) Zalatan, D, N.; Du Bois, J. Topics in Current Chemistry, Vol. 292, Eds.:Yu, J.-Q.; Shi, Z.-J., Springer, 2010, p. 347.
(c) Du Bois, J. Org. Proc. Res. Dev. 2011, 15, 758.
(d) Roizen, J. L.; Harvey, M. E.; Du Bois, J. Acc. Chem. Res. 2012, 45, 911.
[4] Dangel, B. D.; Johnson, J. A.; Sames, D. J. Am. Chem. Soc. 2001, 123, 8149.
[5] (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.
(b) Li, Q.; Zhang, S.-Y.; He, G.; Nack, W. A.; Chen, G. Adv. Syn. Catal. 2014, 356, 1544.
(c) Cheng, T.; Yin, W.; Zhang, Y.; Zhang, Y.; Huang, Y. Org. Biol. Chem. 2014, 12, 1405.
(d) Zhang, S.-Y.; He, G.; Nack, W. A.; Zhao, Y.; Li, Q.; Chen, G. J. Am. Chem. Soc. 2013, 135, 2124.
(e) Zhang, L.-S.; Chen, G.; Wang, X.; Guo, Q.-Y.; Zhang, X.-S.; Pan, F.; Chen, K.; Shi, Z.-J. Angew. Chem. Int. Ed. 2014, 53, 3899.
[6] (a) Nadres, E. T.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 7.
(b) He, G.; Zhao, Y.; Zhang, S.; Lu, C.; Chen, G. J. Am. Chem. Soc. 2012, 134, 3.
[7] He, G.; Zhang, S.-Y.; Nack, W. A.; Li, Q.; Chen, G. Angew. Chem. Int. Ed. 2013, 52, 11124.
[8] Ye, X.; He, Z.; Ahmed, T.; Weise, K.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Chem. Sci. 2013, 4, 3712.
[9] Zhang, Q.; Chen, K.; Rao, W.; Zhang, Y.; Chen, F.-J.; Shi, B.-F. Angew. Chem. Int. Ed. 2013, 52, 13588.
[10] Sun, W.-W.; Cao, P.; Mei, R.-Q.; Li, Y.; Ma, Y.-L.; Wu, B. Org. Lett. 2014, 16, 480.
[11] (a) Wang, Z.; Ni, J.; Kuninobu, Y.; Kanai, M. Angew. Chem. Int. Ed. 2014, 53, 3496.
(b) Wu, X.; Zhao, Y.; Zhang, G.; Ge, H. Angew. Chem. Int. Ed. 2014, 53, 3706.
(c) Wu, X.; Zhao, Y.; Ge, H. Chem. Eur. J. 2014, 20, 9530.
[12] Wang, C.; Chen, C.; Zhang, J.; Han, J.; Wang, Q.; Guo, K.; Liu, P.; Guan, M.; Yao, Y.; Zhao, Y. Angew. Chem. Int. Ed. 2014, 53, 9884.
[13] Neumann, J. J.; Rakshit, S.; Dröge, T.; Glorius, F. Angew. Chem. Int. Ed. 2009, 48, 6892.
[14] Yang, M.; Su, B.; Wang, Y.; Chen, K.; Jiang, X.; Zhang, Y.-F.; Zhang, X.-S.; Chen, G.; Cheng, Y.; Cao, Z.; Guo, Q.-Y.; Wang, L.; Shi, Z.-J. Nature Commun. 2014, 5, 4707.
[15] McNally, A.; Haffemayer, B.; Collins, B. S. L.; Gaunt, M. J. Nature 2014, 510, 129.

文章导航

/