芴基共价三嗪骨架聚合物的室温合成和取代基效应研究
收稿日期: 2015-02-02
网络出版日期: 2015-03-24
基金资助
项目受国家自然科学基金(No. 21404074)、教育部博士点基金(20130181120054)和高分子材料工程国家重点实验室自主课题(Sklpme2014-3-10)资助.
Room Temperature Synthesis and Substituent Effect Study of Fluorene-Based Covalent Triazine-Based Frameworks
Received date: 2015-02-02
Online published: 2015-03-24
Supported by
Project supported by the National Natural Science Foundation of China (No. 21404074), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20130181120054) and the State Key Laboratory of Polymer Materials Engineering (Grant No. SKLPME2014-3-10).
于森 , 徐雍捷 , 蒋加兴 , 任世杰 . 芴基共价三嗪骨架聚合物的室温合成和取代基效应研究[J]. 化学学报, 2015 , 73(6) : 629 -633 . DOI: 10.6023/A15020091
Efficient synthesis and the introduction of functional group are the focus of current research on microporous organic polymers (MOPs). In this report, a series of new covalent triazine-based framework polymers (CTFs) based on fluorene with different substituents (FCTF1~FCTF3) has been synthesized using trifluoromethanesulfonic acid (TFMS) catalyzed cyclotrimerization reactions at room temperature. The chemical structures of the polymers were confirmed by FTIR and elemental analysis. In the FTIR spectra, the nearly absence of peaks at around 2220 cm-1 along with the emergence of strong triazine absorption bands around 1500, 1360 and 800 cm-1 indicated qualitatively a high degree of polymerization. Thermogravimetric analysis (TGA) under nitrogen atmosphere revealed a high thermal stability with 5% weight loss at temperature up to 364 (FCTF1), 452 (FCTF2) and 238 ℃ (FCTF3). The solid UV-Vis spectra showed that the polymers could all absorb light from UV to visible light region. In the photoluminescence measurement, FCTF1~FCTF3 exhibited bright blue fluorescence with maximum emission wavelengths at 437 nm, 455 nm and 439 nm respectively. The specific surface areas of the polymers changed dramatically according to the substituent attached to the fluorine unit, with BET surface areas changing from nearly nil (FCTF3) to 621 m2/g (FCTF2) when the substituent changed from butyl to ethyl. Pore size distributions were calculated using nonlocal density functional theory (NL-DFT) and porous polymers FCTF1 and FCTF2 showed main pore sizes in the micropore region. CO2 adsorption capacities of the polymers were also measured and FCTF1 and FCTF2 showed high CO2 uptake of 1.7 and 1.8 mmol/g respectively at 273 K/1.1 bar. The isosteric heats of adsorption were calculated from the CO2 isotherms measured at 273 and 298 K. FCTF1 and FCTF2 showed adsorption heats of 26.4 and 22.7 kJ/mol respectively at the zero coverage, indicative strong binding affinity of the polymers with CO2. To the best of our knowledge, this is the first report on the substituent effect of fluorene-based CTFs and this research can probably enhance the understanding of the structure-property relationship of porous organic polymer materials.
[1] (a) McKeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675.
(b) Dawson, R.; Cooper, A. I.; Adams, D. J. Prog. Polym. Sci. 2012, 37, 530.
(c) Chang, Z.; Zhang, D.-S.; Chen, Q.; Bu, X.-H. Phys. Chem. Chem. Phys. 2013, 15, 5430.
(d) Zhang, D.-S.; Chang, Z.; Lv, Y.-B.; Hu, T.-L.; Bu, X.-H. RSC Adv. 2012, 2, 408.
[2] Jiang, J.-X.; Cooper, A. Top. Curr. Chem. 2010, 293, 1.
[3] McKeown, N. B.; Gahnem, B.; Msayib, K. J.; Budd, P. M.; Tattershall, C. E.; Mahmood, K.; Tan, S.; Book, D.; Langmi, H. W.; Walton, A. Angew. Chem., Int. Ed. 2006, 45, 1804.
[4] El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Science 2007, 316, 268.
[5] Jiang, J.-X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem., Int. Ed. 2007, 46, 8574.
[6] Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.;, Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. Angew. Chem., Int. Ed. 2009, 48, 9457.
[7] Luo, Y.; Li, B.; Wang, W.; Wu, K.; Tan, B. Adv. Mater. 2012, 24, 5703.
[8] Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem., Int. Ed. 2008, 47, 3450.
[9] Palkovits, R.; Antonietti, M.; Kuhn, P.; Thomas, A.; Schüth, F. Angew. Chem., Int. Ed. 2009, 48, 6909.
[10] Sakaushi, K.; Nickerl, G.; Wisser, F. M.; Nishio-Hamane, D.; Hosono, E.; Zhou, H.; Kaskel, S.; Eckert, J. Angew. Chem., Int. Ed. 2012, 51, 7850.
[11] Wang, W.; Yan, Z.-J.; Yuan, Y.; Sun, F.-X.; Zhao, M.; Ren, H.; Zhu, G.-S. Acta Chim. Sinica 2014, 72, 557. (王维, 闫卓君, 元野, 孙福兴, 赵明, 任浩, 朱广山, 化学学报, 2014, 72, 557.)
[12] Zhang, W.; Li, C.; Yuan, Y.-P.; Qiu, L.-G.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. J. Mater. Chem. 2010, 20, 6413.
[13] Wu, S.-F.; Liu, Y.; Yu, G.-P.; Guan, J.-G.; Pan, C.-Y.; Du, Y.; Xiong, X.; Wang, Z.-G. Macromolecules 2014, 47, 2875.
[14] Ren, S.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y.; Adams, D. J.; Cooper, A. I. Adv. Mater. 2012, 24, 2357.
[15] Zhu, X.; Tian, C.; Mahurin, S. M.; Chai, S.-H.; Wang, C.; Brown, S.; Veith, G. M.; Luo, H.; Liu, H.; Dai, S. J. Am. Chem. Soc. 2012, 134, 10478.
[16] Xie, L.-H.; Yin, C.-R.; Lai, W.-Y.; Fan, Q.-L.; Huang, W. Prog. Polym. Sci. 2012, 37, 1192.
[17] (a) Chen, Q.; Wang, J.-X.; Wang, Q.; Bian, N.; Li, Z.-H.; Yan, C.-G.; Han, B.-H. Macromolecules 2011, 44, 7987.
(b) Yuan, S.; Kirklin, S.; Dorney, B.; Liu, D.-J.; Yu, L. Macromolecules 2009, 42, 1554.
[18] Weber, J.; Thomas, A. J. Am. Chem. Soc. 2008, 130, 6334.
[19] Zhou, X.; Li, H.; Xiao, H.; Li, L.; Zhao, Q.; Yang, T.; Zuo, J.; Huang, W. Dalton Trans. 2013, 42, 5718.
[20] Hug, S.; Mesch, M.-B.; Oh, H.; Popp, N.; Hirscher, M.; Senker, J.; Lotsch, B.-V. J. Mater. Chem. A 2014, 2, 5928.
[21] Ren, S.; Cheng, J.; Zeng, D.; Zhu, W.; Sun, J.; Du, J.; Xu, E.; Zhong, H.; Liu, Y.; Fang, Q. Synth. Met. 2009, 159, 29.
[22] Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.
[23] Qiao, S.; Du, Z.; Yang, R. J. Mater. Chem. A 2014, 2, 1877.
/
〈 |
|
〉 |