研究展望

共价有机多孔聚合物合成新策略

  • 周宝龙 ,
  • 陈龙
展开
  • 天津大学理学院化学系 天津 300072

收稿日期: 2015-02-02

  网络出版日期: 2015-04-08

基金资助

项目受国家重点基础研究规划项目(No. 2015CB856500)和天津大学-海外杰出青年人才引进计划资助.

New Strategies for the Synthesis of Covalent Organic Porous Polymers

  • Zhou Baolong ,
  • Chen Long
Expand
  • Department of Chemistry, School of Science, Tianjin University, Tianjin 300072

Received date: 2015-02-02

  Online published: 2015-04-08

Supported by

Project supported by the National Basic Research Program of China (grant No. 2015CB856500) and Tianjin University's Recruitment Program of Global Young Experts.

摘要

共价有机多孔聚合物(COPs)是由有机结构单元通过共价键连接而形成的一类具有微孔或者介孔结构的新型高分子多孔材料, 在能源、物质吸附与分离、气体存储、光电器件、多相催化以及化学/生物传感等方面展现出巨大的应用潜能. 尽管其合成方法众多, 合成单体多样, 产物结构稳定, 但是传统方法合成的有机多孔材料大多是无定型的, 结构难以控制, 且通常不溶不熔, 很难再加工. 为了解决这些问题, 近年来很多新的合成方法和合成策略被开发出来, 为共价有机多孔聚合物的进一步发展指明了方向. 本文将对这些最新的研究进展做一简要的介绍.

本文引用格式

周宝龙 , 陈龙 . 共价有机多孔聚合物合成新策略[J]. 化学学报, 2015 , 73(6) : 487 -497 . DOI: 10.6023/A15020090

Abstract

Covalent organic porous polymers (COPs) are a kind of novel porous polymers formed by covalent bonds linkage between organic building blocks. They feature intrinsic microporous or mesoporous structures and thus exhibit enormous potential applications in energy, chemicals absorption and separation, photovoltaics, gas storage, heterogeneous catalysis, biochemical sensing and so on. Although many reactions and various monomers are available for their synthesis and the resulted frameworks are robust, many challenges still remain. For example, COPs synthesized via traditional methods are usually amorphous and insoluble, their structures are hardly controlled and it is difficult for further processing. To address these issues, many new kinds of methods and strategies are exploited in recent years, it figures out a new direction towards future development of covalent organic porous polymers. Herein, we will give a brief introduction on some recent important progress made in such area.

参考文献

[1] Cooper, A. I. Adv. Mater. 2009, 21, 1291.
[2] Feng, X.; Ding, X. S.; Jiang, D. Agnew. Chem. Int. Ed. 2010, 49, 8328.
[3] Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
[4] Feng, X.; Ding, X. S.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.
[5] Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D. Chem. Soc. Rev. 2013, 42, 8012.
[6] (a) Zhao, Y. C.; Chen, Q.; Han, B. H. Sci. Sin.-Phys. Mech. Astron. 2011, 41, 1029. (赵彦超, 陈琦, 韩宝航, 中国科学: 物理学 力学 天文学, 2011, 41, 1029.).
(b) Liu, D. P.; Chen, Q.; Zhao, Y. C.; Han, B. H. Chin. Sci. Bull. 2013, 58, 2352. (刘德鹏, 陈琦, 赵彦超, 韩宝航, 科学通报, 2013, 58, 2352.)
[7] Xu, S. J.; Liang, L. Y.; Li, B. Y.; Luo, Y. L.; Liu, C. M.; Tan, B. E. Prog. Chem. 2011, 23, 2085. (徐叔军, 梁丽芸, 李步怡, 罗亚莉, 刘承美, 谭必恩, 化学进展, 2011, 23, 2085.)
[8] Liu, X. M.; Guo, J.; Feng, X.; Dong, J. H. Science Foundation in China 2014, 5, 004. (刘晓明, 郭佳, 冯霄, 董建华, 中国科学基金, 2014, 5, 004.)
[9] Cote, A. P.; Benin, A. I.; Ockwig, N. W.; Michael, O. K.; Matzger, A. J.; Yaghi, O. M. Science 2005, 130, 1166.
[10] Cote, A. P.; El-Kaderi, H. M.; Furukawa, H.; Hunt, J. R.; Yaghi, O. M. J. Am. Chem. Soc. 2007, 129, 12914.
[11] Katekomol, P.; Roeser, J.; Bojdys, M.; Weber, J.; Thomas, A. Chem. Mater. 2013, 25, 1542.
[12] Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Cornelius, K.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 4570.
[13] Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2012, 134, 19524.
[14] Nagai, A.; Chen, X.; Feng, X.; Ding, X.; Guo, Z.; Jiang, D. Angew. Chem., Int. Ed. 2013, 52, 3770.
[15] (a) Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Cooper, A. I. Agnew. Chem. Int. Ed, 2007, 46, 8574.
(b) Zhang, T. T.; Wang, H. T.; Ma, H. P.; Zhu, G. S. Acta Chim. Sinica 2013, 71, 1598. (张婷婷, 王海涛, 马和平, 朱广山, 化学学报, 2013, 71, 1598.)
[16] Jiang, J. X.; Su, F.; Niu, H.; Wood, C. D.; Campbell, N. L.; Khimyak, Y. Z.; Cooper, A. I. Chem. Commun. 2008, 486.
[17] Schmidt, J.; Werner, M.; Thomas, A. Macromolecules 2009, 42, 4426.
[18] Chen, L.; Yang, Y.; Jiang, D. J. Am. Chem. Soc. 2010, 132, 9138.
[19] Yuan, S. W.; Dorney, B.; White, D.; Kirklin, S.; Zapol, P.; Yu, L. P.; Liu, D. J. Chem. Commun. 2010, 46, 4547.
[20] Li, A.; Lu, R. F.; Wang, Y.; Wang, X.; Han, K. L.; Deng, W. Q. Angew. Chem., Int. Ed. 2010, 49, 3330.
[21] Holst, J. R.; Stockel, E.; Adams, D. J.; Cooper, A. I. Macromolecules 2010, 43, 8531.
[22] (a) Yuan, D.; Lu, W.; Zhao, D.; Zhou, H. C. Adv. Mater. 2011, 23, 3723.
(b) Mastalerz, M.; Schneider, M. W.; Oppel, I. M.; Presly, O. Agnew. Chem. Int. Ed. 2011, 50, 1046.
(c) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Science 2007, 316, 268.
(d) Huang, N.; Chen, X.; Krishna, R.; Jiang, D. Angew. Chem. Int. Ed. 2015, 54, 2986.
[23] Wang, W.; Yan, Z. J.; Yuan, Y.; Sun, F. X.; Zhao, M.; Ren, H.; Zhu, G. S. Acta Chim. Sinica 2014, 72, 557. (王维, 闫卓君, 元野, 孙福兴, 赵明, 任浩, 朱广山, 化学学报, 2014, 72, 557.)
[24] Beaudoin, D.; Maris, T.; Wuest, J. D. Nat. Chem. 2013, 5, 830.
[25] Fang, Q. R.; Zhuang, Z. B.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J. H.; Qiu, S. L.; Yan, Y. S. Nat. Commun. 2014, 5, 4503.
[26] Luo, Y. L.; Li, Y.; Tan, B. E. Chem. Commun. 2011, 47, 7704.
[27] Li, G. Y.; Wang, Z. G. Macromolecules 2013, 46, 3058.
[28] Zeng, Y. F.; Zou, R. Y.; Luo, Z.; Zhang, H. C.; Yao, X.; Ma, X.; Zou, R. Q.; Zhao, Y. L. J. Am. Chem. Soc. 2015, 137, 1020.
[29] Zhou, T. Y.; Xu, S. Q.; Wen, Q.; Pang, Z. F.; Zhao, X. J. Am. Chem. Soc. 2014, 136, 15885.
[30] Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. J. Am. Chem. Soc. 2013, 135, 10470.
[31] Medina, D. D.; Rotter, J. M.; Hu, Y. H.; Dogru, M.; Werner, V.; Auras, F.; Markiewicz, J. T.; Knochel, P.; Bein, T. J. Am. Chem. Soc. 2014, 137, 1016.
[32] (a) Zhan, P.; Weng, Z.; Guo, J.; Wang, C. Chem. Mater. 2011, 23, 5243.
(b) Cheng, G.; Hasell, T.; Trewin, A.; Adams, D. J.; Cooper, A. I. Angew. Chem. Int. Ed. 2012, 124, 12899.
[33] Deng, S.; Zhi, J.; Zhang, X.; Wu, Q. Q.; Ding, Y.; Hu, A. G. Angew Chem. Int. Ed. 2014, 53, 14144.
[34] Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y. H.; Jiang, D. Angew. Chem. Int. Ed. 2014, 53, 4850.
[35] Qiao, Z. A.; Chai, S. H.; Nelson, K.; Bi, Z. H.; Chen, J. H.; Mahurin, S. M.; Zhu, X.; Dai, S. Nat. Commun. 2014, 5, 3705.
[36] Gao, X.; Zou, X. Q.; Ma, H. P.; Meng, S.; Zhu, G. S. Adv. Mater. 2014, 26, 3644.
[37] Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135, 5328.
[38] Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2012, 134, 19524.
[39] Das, G.; Shinde, D. B.; Kandambeth, S. B. P.; Biswal; Banerjee, R. Chem. Commun. 2014, 50, 12615.
[40] (a) Hussain, I.; Song, K. P.; Tan, B. E.; Li, T. J. Mater. Chem. A 2014, 2, 11930.
(b) Meng, S.; Ma, H. P.; Jiang, L. C.; Ren, H.; Zhu, G. S. J. Mater. Chem. A 2014, 2, 14536.
(c) Li, L. N.; Ren, H.; Yuan, Y.; Yu, G. L.; Zhu, G. S. J. Mater. Chem. A 2014, 2, 11091.
(d) Li, L. N.; Cai, K.; Wang, P. Y.; Ren, H.; Zhu, G. S. ACS Appl. Mater. Interfaces 2015, 7, 201.
[41] Sun, Q.; Jiang, M.; Shen, Z. J.; Jin, Y. Y.; Pan, S. X.; Wang, L.; Meng, X. J.; Chen, W. Z.; Ding, Y. J.; Li, J. X.; Xiao, F. S. Chem. Commun. 2014, 50, 11844.
[42] Zhu, Y. L.; Zhang, W. Chem. Sci. 2014, 5, 4957.
[43] Xu, H.; Chen, X.; Gao, J.; Lin, J.; Addicoat, M.; Irle, S.; Jiang, D. Chem. Commun. 2014, 50, 1292.
[44] Chen, L.; Furukawa, K.; Gao, J.; Nagai, A.; Nakamura, T.; Dong, Y.; Jiang, D. J. Am. Chem. Soc. 2014, 136, 9806.
[45] Cai, S. L.; Zhang, Y. B.; Pun, A. B.; He, B.; Yang, J. H.; Toma, F. M.; Yaghi, O. M.; Fan, J.; Zheng, S. R.; Zhang, W. G.; Liu, Y. Chem. Sci. 2014, 5, 4693.
[46] Jin, S. B.; Sakurai, T.; Kowalczyk, T.; Dalapati, S.; Xu, F.; Wei, H.; Chen, X.; Gao, J.; Shu, S.; Irle, T.; Jiang, D. Chem. Eur. J. 2014, 20, 14608.
[47] Ding, H.; Li, Y.; Hu, H.; Sun, Y.; Wang, J.; Wang, C.; Zhang, D. Chem. Eur. J. 2014, 20, 14614.

文章导航

/