气液界面胶体球刻蚀法制备二维有序多孔薄膜
收稿日期: 2015-02-28
网络出版日期: 2015-05-25
基金资助
项目受国家自然科学基金(Nos. 21173010, 21473004)和国家重点基础研究发展计划(No. 2013CB932601)资助.
Advances in Fabrication of Two-dimensionally Ordered Porous Membranes by Nanosphere Lithography at the Gas-liquid Interface
Received date: 2015-02-28
Online published: 2015-05-25
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21173010 and 21473004) and the National Key Basic Research Program of China (No. 2013CB932601).
作为一类重要的二维材料, 二维有序多孔薄膜受到人们的广泛关注. 气液界面胶体球刻蚀法是近些年发展起来的一种以漂浮在液面上的单层胶体晶体为模板来制备二维有序纳米结构的方法, 具有简单、高效、重现性好、适用范围广以及结构参数易调变等优点. 近年来, 我们课题组利用气液界面胶体球刻蚀法实现了包括多种无机物纳米网、纳米碗阵列和纳米网-纳米碗复合阵列在内的一系列自支撑二维有序多孔薄膜的可控制备, 考察了其二维光子晶体性质, 并研究了其在刻蚀掩膜、溶剂检测、生物传感、电阻开关器件、光电化学分解水等方面的应用. 本文在重点介绍我们课题组研究进展的同时, 也简要总结了该领域的整体发展状况并展望了该领域的今后发展方向.
李扬 , 齐利民 . 气液界面胶体球刻蚀法制备二维有序多孔薄膜[J]. 化学学报, 2015 , 73(9) : 869 -876 . DOI: 10.6023/A15020144
Two-dimensionally (2D) ordered porous membranes are attractive structures with potential applications in a broad variety of fields such as separation and purification, controlled drug delivery, scaffolds for tissue engineering, biosensors, wetting and adhesion, photonic crystals and optical devices, electric and optoelectric devices, antireflective coatings, low dielectric constant materials, and templates or microreactors for nanofabrication. Nanosphere lithography (NSL) based on monolayer colloidal crystals (MCCs) is a general nanofabrication approach toward 2D patterned nanostructures with high controllability and reproducibility. Recently, nanosphere lithography at the gas-liquid interface, which employs MCCs floating at the solution surface as templates, has been demonstrated to be a facile, inexpensive, efficient, and versatile method for the controllable fabrication of self-standing, large-area, 2D ordered porous membranes with tunable structural parameters. This account summarizes our recent efforts devoted to the fabrication and applications of a variety of inorganic 2D ordered porous membranes including nanonets, nanobowl arrays and nanonet-nanobowl composite arrays by NSL at the gas-liquid interface via controlled chemical deposition. First, free-standing, hexagonally ordered Ag2S nanonets were prepared through interfacial deposition induced by gas diffusion; moreover, a variety of 2D ordered gold nanoarrays with unusual patterns were produced by using nanonet bilayers as unique deposition masks. Second, free-standing, honeycomb-patterned nanobowl arrays of Ag and CaCO3 were fabricated through gas diffusion-induced deposition whereas large-area ZnS nanobowl arrays with high regularity were produced through direct solution deposition. The potential applications of the obtained Ag and ZnS nanobowl arrays as plasmonic crystal-based and photonic crystal-based sensors were demonstrated, respectively. Third, unique Ag2S-Ag heterostructured nanobowl arrays were fabricated by two-step NSL at the gas-liquid interface, which involved the successive deposition of Ag2S nanonets and Ag nanobowl arrays. The produced Ag2S-Ag heterostructured nanobowl arrays exhibited effective resistance switching behaviors and enhanced photoresponses, showing potential applications in both electric devices and photocatalysis. Finally, the research trend in this field is briefly described and the remaining challenges are discussed.
[1] Ye, X.; Qi, L. Nano Today 2011, 6, 608.
[2] Warkiani, M. E.; Bhagat, A. A. S.; Khoo, B. L.; Han, J.; Lim, C. T.; Gong, H. Q.; Fane, A. G. ACS Nano 2013, 7, 1882.
[3] van Rijn, P.; Tutus, M.; Kathrein, C.; Zhu, L.; Wessling, M.; Schwaneberg, U.; Böker, A. Chem. Soc. Rev. 2013, 42, 6578.
[4] Yu, N; Capasso, F. Nat. Mater. 2014, 13, 139.
[5] Ji, L.; McDaniel, M. D.; Wang, S.; Posadas, A. B.; Li, X.; Huang, H.; Lee, J. C.; Demkov, A. A.; Bard, A. J.; Ekerdt, J. G.; Yu, E. T. Nat. Nanotechnol. 2015, 10, 84.
[6] Zhou, L.; Zhang, L.; Liao, L.; Yang, M.; Xie, Q.; Peng, H.; Liu, Z.; Liu, Z. Acta Chim. Sinica 2014, 72, 289. (周琳, 张黎明, 廖磊, 杨明媚, 谢芹, 彭海琳, 刘志荣, 刘忠范, 化学学报, 2014, 72, 289.)
[7] Lei, Y.; Yang, S.; Wu, M.; Wilde, G. Chem. Soc. Rev. 2011, 40, 1247.
[8] Li, Y.; Cai, W.; Duan, G. Chem. Mater. 2007, 20, 615.
[9] Zhang, J.; Li, Y.; Zhang, X.; Yang, B. Adv. Mater. 2010, 22, 4249.
[10] Zhang, G.; Zhao, Z.-Y.; Wang, D.-Y. Chem. J. Chin. Univ. 2010, 31, 839. (张刚, 赵志远, 汪大洋, 高等学校化学学报, 2010, 31, 839.)
[11] Li, Y.; Duan, G.; Liu, G.; Cai, W. Chem. Soc. Rev. 2013, 42, 3614.
[12] Geng, C.; Wei, T.; Wang, X.; Shen, D.; Hao, Z.; Yan, Q. Small 2014, 10, 1668.
[13] Ye, X.; Qi, L. Sci. China Chem. 2014, 57, 58.
[14] Ma, H.; Hao, J. Chem. Soc. Rev. 2011, 40, 5457.
[15] Bai, H.; Du, C.; Zhang, A.; Li, L. Angew. Chem. Int. Ed. 2013, 52, 12240.
[16] Xu, H.; Goedel, W. A. Angew. Chem. Int. Ed. 2003, 42, 4694.
[17] Yan, F.; Goedel, W. A. Chem. Mater. 2004, 16, 1622.
[18] Yan, F.; Goedel, W. A. Nano Lett. 2004, 4, 1193.
[19] Xu, H.; Goedel, W. A. Angew. Chem. Int. Ed. 2003, 42, 4696.
[20] Chen, J.; Chao, D.; Lu, X.; Zhang, W.; Manohar, S. K. Macromol. Rapid Commun. 2006, 27, 771.
[21] Jiang, S.; Chen, J.; Tang, J.; Jin, E.; Kong, L.; Zhang, W.; Wang, C. Sens. Actuators, B-Chem. 2009, 140, 520.
[22] Sun, F. Q.; Yu, J. C. Angew. Chem. Int. Ed. 2007, 46, 773.
[23] Li, C.; Hong, G.; Qi, L. Chem. Mater. 2010, 22, 476.
[24] Hong, G.; Li, C.; Qi, L. Adv. Funct. Mater. 2010, 20, 3774.
[25] Li, C.; Hong, G.; Yu, H.; Qi, L. Chem. Mater. 2010, 22, 3206.
[26] Ye, X.; Li, Y.; Dong, J.; Xiao, J.; Ma, Y.; Qi, L. J. Mater. Chem. C 2013, 1, 6112.
[27] Li, Y.; Ye, X.; Ma, Y.; Qi, L. Small 2015, 11, 1183.
[28] Wang, H.; Qi, L. Adv. Funct. Mater. 2008, 18, 1249.
[29] Fujii, S.; Kappl, M.; Butt, H. J.; Sugimoto, T.; Nakamura, Y. Angew. Chem. Int. Ed. 2012, 51, 9809.
[30] Wachner, D.; Marczewski, D.; Goedel, W. A. Adv. Mater. 2013, 25, 278.
[31] Akerboom, S.; Appel, J.; Labonte, D.; Federle, W.; Sprakel, J.; Kamperman, M. J. R. Soc. Interface 2015, 12, 20141061.
[32] Liu, Y.; Li, Z.; Zhong, W.; Zhang, L.; Chen, W.; Li, Q. Nano Res. Lett. 2014, 9, 389.
[33] Xu, S.; Sun, F.; Gu, F.; Zuo, Y.; Zhang, L.; Fan, C.; Yang, S.; Li, W. ACS Appl. Mater. Interfaces 2014, 6, 1251.
[34] Li, H.; Thériault, J.; Rousselle, B.; Subramanian, B.; Robichaud, J.; Djaoued, Y. Chem. Commun. 2014, 50, 2184.
[35] Zhen, H.; Li, K. New J. Chem. 2014, 38, 4041.
[36] Geng, C.; Zheng, L.; Yu, J.; Yan, Q.; Wei, T.; Wang, X.; Shen, D. J. Mater. Chem. 2012, 22, 22678.
[37] Zhang, J. T.; Chao, X.; Asher, S. A. J. Am. Chem. Soc. 2013, 135, 11397.
[38] Yu, J.; Yan, Q.; Shen, D. ACS Appl. Mater. Interfaces 2010, 2, 1922.
[39] Dai, Z.; Li, Y.; Duan, G.; Jia, L.; Cai, W. ACS Nano 2012, 6, 6706.
[40] Guo, Y.; Yang, M.; Wu, Q. Acta Chim. Sinica 2013, 71, 693. (郭阳光, 杨穆, 吴强, 化学学报, 2013, 71, 693.)
/
〈 |
|
〉 |