研究论文

类石墨烯碳材料的制备及其电容性能研究

  • 苏善金 ,
  • 来庆学 ,
  • 梁彦瑜
展开
  • 南京航空航天大学材料科学与技术学院 南京 210016

收稿日期: 2015-03-25

  网络出版日期: 2015-06-02

基金资助

项目受国家自然科学基金面上(No. 21273114)和江苏省自然科学基金面上(No. BK2012791)资助.

Synthesis of Graphene-like Carbon Sheets (GLCS) and Its Supercapacitor Property

  • Su Shanjin ,
  • Lai Qingxue ,
  • Liang Yanyu
Expand
  • College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016

Received date: 2015-03-25

  Online published: 2015-06-02

Supported by

Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn.Project supported by the National Natural Science Foundation of China (Grant No. 21273114) and the Natural Science Foundation of Jiangsu Province (Grant No. BK2012791).

摘要

利用三聚氰胺高温下缩聚产生的g-C3N4作为二维模板, 同时利用其与对苯二甲醛发生席夫碱反应产生聚合物以及聚合物的碳化, 制备了具有二维形貌的类石墨烯片层碳材料(GLCS), 随后, 将GLCS用KOH进行活化, 得到了具有多孔结构的a-GLCS. 对材料进行透射电镜(TEM)、扫描电镜(SEM)、X射线光电子能谱测试(XPS)、拉曼光谱(Raman)和比表面积分析(BET), 并将材料用作超级电容器电极材料进行电化学测试. 结果表明该方法能够制备得到二维片层碳材料, 并且材料中掺杂有一定量的氮元素. GLCS经过KOH活化后, 比表面积和电容性能都有了大幅提高, 电流密度为1 A/g时GLCS和a-GLCS比容量分别为160和300 F/g.

本文引用格式

苏善金 , 来庆学 , 梁彦瑜 . 类石墨烯碳材料的制备及其电容性能研究[J]. 化学学报, 2015 , 73(7) : 735 -740 . DOI: 10.6023/A15030207

Abstract

As a new kind of carbon material, graphene has unique two-dimensional (2D) structure and outstanding physicochemical properties, such as high electrical conductivity and large surface area (2675 m2/g). In recent years, graphene has exhibited great potential for application as electrode materials in supercapacitors. In this work, a layered graphic carbon nitride (g-C3N4) which was generated through polycondensation of melamine was employed as a 2D self-sacrificing template. Then, a nitrogen-doped graphene-like 2D carbon sheets (GLCS) was prepared by the calcination of melamine and terephthalaldehyde. This graphene synthesis method is a more facile and cost-effective route comparing with traditional synthetic methods, such as chemical exfoliation of graphite and chemical vapor deposition (CVD). In a typical synthesis, melamine was used as precursor of template and reactant of Schiff-base reaction. The g-C3N4 template was used to confine the as-formed polymer to the interlayer gaps at about 600 ℃. Then, as the temperature continued to rise, the g-C3N4 template undergoes complete thermolysis and the polymer between interlayer gaps was carbonized to be GLCS. Then, after activated by KOH, a porous a-GLCS with high specific surface area and pore volume was obtained. GLCS and a-GLCS were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurement, Raman spectroscopy etc. TEM and SEM results showed that GLCS showed well-defined two-dimensional structure, XPS analysis determined the nitrogen-containing functional groups present on the surface of the sample, BET surface area measurement showed that after activated by KOH, the surface area have been obviously improved from 262.8 m2/g to 478.5 m2/g. The electrochemical measurement showed that, at the current density of 1 A/g, the specific capacitance of GLCS and a-GLCS are 150 and 300 F/g respectively. When the current density increased up to 20 A/g the specific capacitance remained 100 and 200 F/g respectively. The increasing of the specific capacitance was considered to be due to the generation of microporous during the activation process.

参考文献

[1] Lu, X.; Yu, M.; Wang, G. Energy Environ. Sci. 2014, 7, 2160.
[2] Hall, P. J.; Mirzaeian, M.; Fletcher, S. I.; Sillars, F. B. Energy Environ. Sci. 2010, 3, 1238.
[3] Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41, 797.
[4] Wood, K. N.; O'hayre, R.; Pylypenko, S. Energy Environ. Sci. 2014, 7, 1212.
[5] Zhai, Y.; Dou, Y.; Zhao, D. Adv. Mater 2011, 23, 4828.
[6] Kim, H.; Fortunato, M. E.; Xu, H. J. Phys. Chem. C 2011, 115, 20481.
[7] Jiang, H.; Lee, P. S.; Li, C. Energy Environ. Sci. 2013, 6, 41.
[8] Dai, L.; Chang, D. W.; Baek, J. B. Small 2012, 8, 1130.
[9] Hu, H.; Hu, Z.; Ren, X. Chin. J. Chem. 2015, 33, 199
[10] Wen, L.; Liu, C.; Cheng, H. Acta Chim. Sinica 2014, 72, 333. (闻雷, 刘成名, 成会明, 化学学报, 2014, 72, 333.)
[11] Wang, Y.; Yu, X.; Huang, S.; Wang, Z. Acta Chim. Sinica 2014, 72, 378. (王跃, 余旭丰, 黄少铭, 王志民, 化学学报, 2014, 72, 378.)
[12] Chou, T. C.; Huang, C. H.; Doong, R. A. J. Mater. Chem. A 2013, 1, 2886.
[13] Sheng, Z. H.; Shao, L.; Chen, J. J. ACS Nano 2011, 5, 4350.
[14] Du, Q.; Zheng, M.; Zhang, L. Electrochim. Acta 2010, 55, 3897.
[15] Yu, X.; Sheng, K.; Shi, G. Acta Chim. Sinica 2014, 72, 319. (于小雯, 盛凯旋, 石高全, 化学学报, 2014, 72, 319.)
[16] Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.
[17] Xu, Y.; Sheng, K.; Li, C.; Shi, G. ACS Nano 2010, 4, 4324.
[18] Zhu, Y.; Murali, S.; Stoller, M. D.; Ruoff, R. S. Science 2011, 332, 1537.
[19] Luo, B.; Liu, S.; Zhi, L. Small 2012, 8, 630.
[20] Fang, N.; Liu, F.; Miao, L.; Jiang, J. Acta Chim. Sinica 2012, 70, 2197. (方楠, 刘风, 缪灵, 江建军, 化学学报, 2012, 70, 2197.)
[21] Feng, H.; Wu, Y.; Li, J. Small 2014, 10, 2233.
[22] Huang, L.; Wu, B.; Chen, J. Small 2013, 9, 1330.
[23] Chen, J.; Wu, B.; Liu, Y. Acta Chim. Sinica 2014, 72, 359. (陈集思, 武斌, 刘云圻, 化学学报, 2014, 72, 359.)
[24] Li, X. H.; Kurasch, S.; Kaiser, U. Angew. Chem., Int. Ed. 2012, 51, 9689.
[25] Li, X. H.; Antonietti, M. Angew. Chem., Int. Ed. 2013, 52, 4572.
[26] Wang, J.; Kaskel, S. J. Mater. Chem. 2012, 22, 23710.
[27] Xiao, N.; Tan, H.; Zhu, J. ACS Appl. Mater. Interfaces 2013, 5, 9656.
[28] Xu, G.; Ding, B.; Nie, P. Chem. Eur. J. 2013, 19, 12306.
[29] Xu, Y.; Lin, Z.; Huang, X. Adv. Mater. 2013, 25, 5779.
[30] Zhou, M.; Pu, F.; Wang, Z. Carbon 2014, 68, 185.
[31] Chen, L. F.; Zhang, X. D.; Liang, H. W. ACS Nano 2012, 6, 7092.
[32] Hao, L.; Luo, B.; Li, X. Energy Environ. Sci. 2012, 5, 9747.
[33] Zhou, D. D.; Li, W. Y.; Dong, X. L. J. Mater. Chem. A 2013, 1, 8488.
[34] Zhu, H.; Yin, J.; Wang, X. Adv. Funct. Mater. 2013, 23, 1305.
[35] Han, J.; Zhang, L. L.; Lee, S. ACS Nano 2012, 7, 19.
[36] Su, Y. S.; Arumugam, M. Nat. Commun. 2012, 3, 1166.
[37] Kruk, M.; Jaroniec, M. Chem. Mater. 2001, 13, 3169
[38] Prasad, Y.; Abhik, B.; Satishchandra, O. ChemSusChem 2012, 5, 2159.
[39] Li, Z.; Xu, Z.; Mitlin, D. Energy Environ. Sci. 2013, 6, 871.

文章导航

/