研究通讯

高性能的二维层状材料硫化钨界面层的有机太阳能电池

  • 马春燕 ,
  • 傅伟飞 ,
  • 黄国伟 ,
  • 陈红征 ,
  • 徐明生
展开
  • 浙江大学硅材料国家重点实验室 高分子科学与工程学系 杭州 310027

收稿日期: 2015-04-10

  网络出版日期: 2015-06-02

基金资助

项目受浙江省自然科学基金(杰出青年基金项目: R4110030)、教育部新世纪优秀人才支持计划(No. NCET-12-0494)、高等学校博士学科点专项科研基金(No. 20130101110123)、科技部政府间国际合作项目(No. 2013DFG52800)资助.

Two-Dimensional WS2 Sheets as Interfacial Layer for High-Performance Organic Solar Cells

  • Ma Chunyan ,
  • Fu Weifei ,
  • Huang Guowei ,
  • Chen Hongzheng ,
  • Xu Mingsheng
Expand
  • State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027

Received date: 2015-04-10

  Online published: 2015-06-02

Supported by

Project supported by Zhejiang Provincial Natural Science Foundation of China (Youth Talent Program: R4110030), the Program for New Century Excellent Talents in University (No. NCET-12-0494), the Research Fund for the Doctoral Program of Higher Education (No. 20130101110123) and the Program for 14th China-Japan S&T Cooperation (No. 2013DFG52800).

摘要

化学剥离的硫化钨二维层状材料在经过紫外臭氧处理后用作有机太阳能电池的空穴传输层, 可以显著提高电池器件的光电转化效率至8.37%; 作为空穴传输层, 硫化钨二维层状材料可以与经典的空穴传输材料PEDOT:PSS相媲美. 利用X射线光电子能谱(XPS)、拉曼光谱(Raman)、原子力显微镜(AFM)对硫化钨的结构和形貌进行分析. 结果表明, 紫外臭氧处理过后, 氧原子能填充硫化钨因锂插层剥离而产生的硫空位, 减少它的缺陷, 并且使其部分被氧化, 从而改善硫化钨的电学性能.

本文引用格式

马春燕 , 傅伟飞 , 黄国伟 , 陈红征 , 徐明生 . 高性能的二维层状材料硫化钨界面层的有机太阳能电池[J]. 化学学报, 2015 , 73(9) : 949 -953 . DOI: 10.6023/A15040246

Abstract

Two-dimensional layered WS2 sheets is used as the hole extraction layer (HEL) in organic solar cells (OSCs). We find that UV-ozone treatment of the chemically exfoliated WS2 sheets can significantly improve the device performance of the OSCs with the power conversion efficiency (PCE) of about 8.37%, which is comparable to the OSCs with the standard PEDOT:PSS as the HEL. We attribute the improvement to the incorporation of oxygen into the lattice of the WS2 sheets. The oxygen incorporation reduces the lattice vacancies of WS2 sheets and makes the WS2 partially oxidized and consequently improves the electrical properties of the WS2 sheets.

参考文献

[1] Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Chem. Rev. 2013, 113, 3766.
[2] Cai, Y.; Yang, X.; Liang, T.; Dai, L.; Ma, L.; Huang, G. W.; Chen, W. X.; Chen, H. Z.; Su, H. X.; Xu, M. S. Nanotechnology 2014, 25, 465401.
[3] Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Adv. Mater. 2013, 25, 5807.
[4] Yang, X.; Fu, W. F.; Liu, W. Q.; Hong, J. H.; Cai, Y.; Jin, C. H.; Xu, M. S.; Wang, H. B.; Yang, D. R.; Chen, H. Z. J. Mater. Chem. A 2014, 2, 7727.
[5] Wi, S. J.; Kim, H.; Chen, M.; Nam, H.; Guo, J.; Meyhofer, E.; Liang, X. G. ACS Nano 2014, 8, 5270.
[6] Bernardi, M.; Palummo, M.; Grossman, J. C. Nano Lett. 2013, 13, 3664.
[7]
(a) Cheng, P.; Shi, Q. Q.; Zhan, X. W. Acta Chim. Sinica 2015, 73, 252. (程沛, 史钦钦, 占肖卫, 化学学报, 2015, 73, 252.);
(b) Li, J. J. J. Mater. Chem. A 2013, 1, 2379;
(c) Li, Y. F. Acc. Chem. Res. 2012, 45, 723;
(d) Zhang, Z. G.; Li, Y. F. Sci. China Chem. 2015, 58, 192.
[8]
(a) Liu, Y. S.; Chen, C. C.; Hong, Z. R.; Gao, J.; Yang, Y.; Zhou, H. P.; Dou, L. T.; Li, G.; Yang, Y. Sci. Rep. 2013, 3, 3356;
(b) Zhang, S. Q.; Ye, L.; Zhao, W. C.; Yang, B.; Wang, Q.; Hou, J. H. Sci. China Chem. 2015, 58, 248;
(c) Chen, J. D.; Cui, C. H.; Li, Y. Q.; Zhou, L.; Ou, Q. D.; Li, C.; Li, Y. F.; Tang, J. X. Adv. Mater. 2015, 27, 1035.
[9]
(a) Ye, S. Y.; Liu, Z. W.; Bian, Z. Q.; Huang, C. H. Acta Chim. Sinica 2015, 73, 193. (叶森云, 刘志伟, 卞祖强, 黄春辉, 化学学报, 2015, 73, 193.);
(b) Zuo, L. J.; Jiang, X. X.; Yang, L. G.; Xu, M. S.; Nan, Y. X; Yan, Q. X.; Chen, H. Z. Appl. Phys. Lett. 2011, 99, 183306.
[10] Liu, J.; Xue, Y. H.; Gao, Y. X.; Yu, D. S.; Durstock, M.; Dai, L. M. Adv. Mater. 2012, 24, 2228.
[11] Yang, X.; Liu, W. Q.; Xiong, M.; Zhang, Y. Y.; Liang, T.; Yang, J. T.; Xu, M. S.; Ye, J.; Chen, H. Z. J. Mater. Chem. A 2014, 2, 14798.
[12] Liu, W. Q.; Yang, X.; Zhang, Y. Y.; Xu, M. S.; Chen, H. Z. RSC Adv. 2014, 4, 32744.
[13] Kang, J.; Tonggay, S.; Zhou, J.; Li, J. B.; Wu, J. Q. Appl. Phys. Lett. 2013, 102, 012111.
[14] Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Chem. Soc. Rev. 2015, 44, 2757.
[15]
(a) Golub, A. S.; Zubavichus, Y. V.; Slovokhotova, Y. L.; Novikov, Y. N. Russian Chem. Rev. 2003, 72, 123;
(b) Chow, P. K.; Jacobs- Gedrim, R. B.; Gao, J.; Lu, T. M.; Yu, B.; Terrones, H.; Koratkar, N. ACS Nano 2015, 9, 1520.
[16] Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Nat. Mater. 2013, 12, 850.
[17]
(a) Khudorozhko, G. F.; Asanov, I. P.; Mazalov, L. N.; Kravtsova, E. A.; Parygina, G. K.; Fedorov, V. E.; Mironov, J. V. J. Electron. Spectrosc. Relat. Phenom. 1994, 68, 199;
(b) Chen, T. Y.; Chang, Y. H.; Hsu, C. L.; Wei, K. H.; Chiang, C. Y.; Li, L. J. Int. J. Hydrogen Energy 2013, 38, 12302.
[18] Liu, F.; Li, L.; Mo, F. Y.; Chen, J.; Deng, S. Z.; Xu, N. S. Cryst. Growth Des. 2010, 10, 5193.

文章导航

/