1,4-二(4'-N,N-二苯胺基苯乙烯基)苯衍生物单双光子吸收性质的理论研究
收稿日期: 2015-04-10
网络出版日期: 2015-06-15
基金资助
项目受国家自然科学基金(No. 21173099, 21473071, 20973078)、国家重点研究发展计划(No. 2013CB 834801)及中央高校基本科研项目专项资金资助.
Theoretical Investigations on One and Two-photon Absorption Properties of 1,4-Di(4'-N,N-diphenylaminostyryl)benzene Derivatives
Received date: 2015-04-10
Online published: 2015-06-15
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21173099, 21473071 and 20973078), the Major State Basis Research Development Program (No. 2013CB 834801), and the Special Funding to Basic Scientific Research Projects for Central Colleges.
随着双光子显微技术的发展, 获得性质优良的双光子荧光染料成为研究热点. 因此, 通过密度泛函理论(DFT)对一系列D-π-A-π-D型1,4-二(4'-N,N-二苯胺基苯乙烯基)苯(DPA-DSB)衍生物平衡几何结构、电子结构、单双光子吸收以及荧光发射性质进行了理论研究, 对其结构和光学性质的分析表明, 对A, π结构元进行修饰或更换可有效地调节光谱; 向分子片段A引入杂原子可有效提高双光子吸收截面; 和乙烯基团相比, π桥为乙炔基, 若对分子平面性改变不大, 则导致分子双光子吸收截面值减小, 若乙炔桥很大程度改善分子平面性, 则导致分子的TPA截面增大. 本研究旨在理解DPA-DSB衍生物分子结构与双光子性质间的关系, 为设计合成新型双光子材料提供重要信息.
关键词: DPA-DSB衍生物; 单光子吸收; 荧光发射; 双光子吸收; 双光子吸收截面
王丹 , 郭景富 , 任爱民 , 封继康 , 熊涛 , 肖义 . 1,4-二(4'-N,N-二苯胺基苯乙烯基)苯衍生物单双光子吸收性质的理论研究[J]. 化学学报, 2015 , 73(8) : 840 -846 . DOI: 10.6023/A15040247
With the development of two-photon microscopy, getting excellent two-photon fluorescence dyes become a hot topic. In this work, the equilibrium geometries, electronic structures, one- and two-photon absorption properties and the fluorescent emission properties for a series of D-π-A-π-D type 1,4-di(4'-N,N-diphenylaminostyryl)benzene (DPA-DSB) derivatives were investigated by the density functional theory (DFT). The results show that the one photon absorption wavelengths of this series of one-dimensional linear conjugated molecules are in the range 370~540 nm, fluorescence emission wavelengths are in the range 435~700 nm, provided the absorption of the UV to green light and the emission of the all visible range. The Stokes shifts are in the 47~270 nm range. Thus, these molecules provide broad color fluorophore options molecules for biological fluorescence imaging and fluorescence microscopy. The response function approach has been used to calculate the two-photon properties. Analysis of two-photon properties of these molecules suggests that these molecules two-photon absorption wavelengths are at 650~880 nm. The molecules 2, 4, 5, 6, 8 and 12, 14 have two-photon absorption in the infrared light range, which means these molecules can be used as alternative molecules to design the infrared medical material. These molecules have the fluorescence signal in the visible range and excellent two-photon characteristics; can be used as two-photon fluorescent probes biomarkers and alternative materials. Analyzing its structure and optical properties indicate that the modification or replacement of the electron-withdrawing group in the center of the molecule can effectively shift its electronic spectrum, the addition of N atom or S atom can significantly improve the two-photon absorption cross-section. For the acetylenyl moiety as π bridge, if the molecular plane did not change compared with ethylene bridge, it makes the two-photon absorption cross-section decreases; if acetylene bridge improved the planarity of molecule, it causes two-photon absorption cross-section increases. This study aims to understand the relationship between molecular structure and two-photon properties and offer some important information for the design and synthesis of novel materials.
[1] Göppert-mayer, M. Ann. Phys. 1931, 401, 273.
[2] Kaiser, W.; Garrett, C. G. B. Phys. Rev. Lett. 1961, 7, 229.
[3] Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73.
[4] Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I.-Y. S.; McCord-Maughon, D.; Qin, J. R.; Rumi, M.; Wu, X. L.; Marder, S. R.; Perry, J. W. Nature 1999, 398, 51.
[5] Larson, D. R.; Zipfel, W. R.; Williams, R. M. Science 2003, 300, 1434.
[6] Palmer, G. M.; Keely, P. J.; Breslin, T. M. Photochem. Photobiol. 2003, 78, 462.
[7] Ehrlich, J. E.; Wu, X. L.; Lee, I.-Y. Opt. Lett. 1997, 22, 1843.
[8] He, G. S.; Bhawalkar, J. D.; Zhao, C. F. Appl. Phys. Lett. 1995, 67, 2433.
[9] Spangler, C. W. J. Mater. Chem. 1999, 9, 2013.
[10] Jian, F. F.; Sun, P. P.; Li, Y. F.; Xiao, H. L. Acta Chim. Sinica 2008, 66, 2006. (建方方, 孙萍萍, 李玉峰, 肖海连, 化学学报, 2008, 66, 2006.)
[11] Köhler, R. H.; Cao, J.; Zipfel, W. R.; Webb, W. W.; Hansen, M. R. Science 1997, 276, 2039.
[12] Xu, C.; Zipfel, W. R.; Shear, J. B.; William, R. M.; Webb, W. W. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 10763.
[13] Parthenopoulos, D. A.; Rentaepis, P. M. Science 1989, 245, 843.
[14] Belfield, K.; Liu, Y.; Negres, R. Chem. Mater. 2002, 14, 3663.
[15] Kawata, S.; Kawata, Y. Chem. Rev. 2000, 100, 1777.
[16] Konig, K. J. Microsc. 2000, 200, 83.
[17] Zipfel, W. R.; Williams, R. M.; Christie, R. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 7075.
[18] Miller, M. J.; Wei, S. H.; Parker, I. Science 2002, 296, 1869.
[19] Belfield, K. D.; Ren, X. B.; Van Stryland, E. W. J. Am. Chem. Soc. 2000, 122, 1217.
[20] Maruo, S.; Nakamura, O.; Kawata, S. Opt. Lett. 1997, 22, 132.
[21] Kawata, S.; Sun, H. B.; Tanaka, T. Nature 2001, 412, 697.
[22] Zhou, W.; Kuebler, S. M.; Braun, K. L. Science 2002, 296, 1106.
[23] Abbotto, A.; Beverina, L.; Bozio, R.; Bradamante, S.; Pagani, G. A.; Signorini, R. Synth. Met. 2001, 121, 1755.
[24] Bauer, C.; Schnabel, B.; Kley, E. B. Adv. Mater. 2002, 14, 673.
[25] Abbotto, A.; Beverina, L.; Bozio, R. Adv. Mater. 2000, 12, 1963.
[26] Xia, G. M.; Fang, Q.; Xu, X. G.; Xu, G. B.; Liu, Z. Q.; Wang, W. Acta Chim. Sinica 2003, 61, 976. (夏光明, 方奇, 许心光, 许贵宝, 刘志强, 王伟, 化学学报, 2003, 61, 976.)
[27] Zipfel, W. R.; Williams, R. M.; Webb, W. W. Nat. Biotechnol. 2003, 21, 1369.
[28] Helmchen, F.; Denk, W. Nat. Methods 2005, 2, 932.
[29] Williams, R. M.; Zipfel, W. R.; Webb, W. W. Curr. Opin. Chem. Biol. 2001, 5, 603.
[30] He, G. S.; Tan, L.-S.; Zheng, Q. D.; Prasad, P. N. Chem. Rev. 2008, 108, 1245.
[31] Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L. Angew. Chem. Int. Ed. 2009, 48, 3244.
[32] Kim, H. M.; Cho, B. R. Chem. Commun. 2009, 153.
[33] Yan, Y. X.; Tao, X. T.; Yang, J. X.; Wang, D.; Yu, X. Q.; Zhao, X.; Jiang, M. H. Acta Chim. Sinica 2003, 61, 1809. (延云兴, 陶绪堂, 杨家祥, 王东, 于晓强, 赵显, 蒋民华, 化学学报, 2003, 61, 1809.)
[34] Huang, C. H.; Li, F. Y.; Huang, Y. Y. Features Ultra-thin Film Photovoltaic, 1st ed., Peking University, Beijing, 2001, p. 165. (黄春辉, 李富友, 黄岩谊, 光电功能超薄膜(第一版), 北京大学, 北京, 2001, p. 165.)
[35] Leng, E. N.; Bazan, G. C.; Kelley, A. M. J. Chem. Phys. 2009, 130, 044501.
[36] Tong, S. R.; Ma, C. P.; Ge, M. F.; Wang, W. G.; Wang, D. X. J. Mol. Struct. 2010, 978, 108.
[37] Hahn, S.; Kim, S.; Cho, M. J. Phys. Chem. B 1990, 103, 8221.
[38] Alam, M. M.; Chattopadhyaya, M.; Chakrabarti, S. Phys. Chem. Chem. Phys. 2011, 13, 9285.
[39] Zhao, Y.; Ren, A.-M.; Zhang, X. B.; Feng, J.-K. Acta Chim. Sinica 2008, 66, 15. (赵杨, 任爱民, 张祥标, 封继康, 化学学报, 2008, 66, 15.)
[40] Ji, Y.; Qian, Y.; Zhou, Z. Q.; Cui, Y. P. Acta Chim. Sinica, 2011, 69, 2499. (吉彦, 钱鹰, 周志强, 崔一平, 化学学报, 2011, 69, 2499.)
[41] Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.; Kannan, R.; Yuan, L.; He, G. S.; Prasad, P. N. Chem. Mater. 1998, 10, 1863.
[42] Albota, M.; Beljonne, D.; Brédas, J.-L.; Ehrlich, J. E.; Fu, J. Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Rockel, H.; Rumi, M.; Subramaniam, C.; Webb, W. W.; Wu, X. L.; Xu, C. Science 1998, 281, 1653.
[43] Zyss, J.; Ledoux, I. Chem. Rev. 1994, 94, 77.
[44] Vagin, S.; Barthel, M.; Dini, D.; Michael, A. Inorg. Chem. 2003, 42, 2683.
[45] Cronstrand, P.; Luo, Y.; Ågren, H. Adv. Quantum Chem. 2005, 50, 1.
[46] Monson, P. R.; McClain, W. M. J. Chem. Phys. 1970, 53, 29.
[47] Olsen, J.; Jørgensen, P. J. Chem. Phys. 1985, 82, 3235.
[48] Helgaker, T. Dalton, an ab initio electronic structure program, Release 2. 0, 2005, See http://www.daltonprogram.org/index.html.
[49] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R. Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. Fox, D. J. Gaussian 09, revisions A. 02 and B. 01, Gaussian, Inc., Wallingford, CT, 2009.
/
| 〈 |
|
〉 |