研究通讯

铜促进下腙的氧化胺化反应:1H-吲唑和1H-吡唑的合成

  • 丁正伟 ,
  • 谭启涛 ,
  • 刘秉新 ,
  • 张可 ,
  • 许斌
展开
  • a 上海大学化学系 上海 200444;
    b 中国科学院上海有机化学研究所金属有机化学国家重点实验室 上海 200032;
    c 华东师范大学化学系上海市绿色化学与化工过程绿色化重点实验室 上海 200062

收稿日期: 2015-04-16

  网络出版日期: 2015-06-15

基金资助

项目受国家自然科学基金(Nos.21272149,21302123),上海市教委科研创新重点项目(No.14ZZ094)以及上海市自然科学基金(No.13ZR1416400)资助.

Copper-Promoted Oxidative C-H Bond Amination of Hydrazones:Synthesis of 1H-Indazoles and 1H-Pyrazoles

  • Ding Zhengwei ,
  • Tan Qitao ,
  • Liu Bingxin ,
  • Zhang Kea ,
  • Xu Bin
Expand
  • a Department of Chemistry, Shanghai University, Shanghai 200444;
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    c Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062

Received date: 2015-04-16

  Online published: 2015-06-15

Supported by

Project supported by the National Natural Science Foundation of China(Nos. 21272149, 21302123), Innovation Program of Shanghai Municipal Education Commission(No. 14ZZ094) and Science and Technology Commission of Shanghai Municipality(No. 13ZR1416400).

摘要

吲唑和吡唑是两类重要的含氮杂环化合物,具有广泛的生物活性.发展了一类铜促进下腙的C(sp2)-H键氧化胺化反应,简便、高效地构建了一系列1H-吲唑和1H-吡唑衍生物.该反应条件温和,具有广泛的底物适用范围和较好的官能团兼容性.

本文引用格式

丁正伟 , 谭启涛 , 刘秉新 , 张可 , 许斌 . 铜促进下腙的氧化胺化反应:1H-吲唑和1H-吡唑的合成[J]. 化学学报, 2015 , 73(12) : 1302 -1306 . DOI: 10.6023/A15040263

Abstract

An efficient copper-promoted C(sp2)-H bond amination was developed to afford 1H-indazoles and 1H-pyrazoles in moderate to excellent yields from easily accessible hydrazones. This process tolerated a variety of functional groups and afforded the corresponding 1H-indazoles and 1H-pyrazoles under mild conditions.

参考文献

[1] (a) Joule, J. A.; Mills, K. Heterocyclic Chemistry, 4th ed., Blackwell Science, Oxford, 2000.
(b) Butler, M. S. J. Nat. Prod. 2004, 67, 2141.
(c) Zhao, J.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235.(赵金钵, 张前, 化学学报, 2015, 73, 1235.)
[2] Fu, X.; Chen, Y.; Yang, Y.; He, S.; Shen, C.; Wan, R. Chin. J. Org. Chem. 2014, 34, 2090.(傅晓东, 陈月, 杨阳, 贺书泽, 沈陈, 万嵘, 有机化学, 2014, 34, 2090.)
[3] Keppler, B. K.; Hartmann, M. Met.-Based Drugs 1994, 1, 145.
[4] Sun, J. H.; Teleha, C. A.; Yan, J. S.; Rodgers, J. D.; Nugiel, D. A. J. Org. Chem. 1997, 62, 5627.
[5] De Lena, M.; Lorusso, V.; Latorre, A.; Fanizza, G.; Gargano, G.; Caporusso, L.; Guida, M.; Catino, A.; Crucitta, E.; Sambiasi, D.; Mazzei, A. Eur. J. Cancer 2001, 37, 364.
[6] Lee, F. Y.; Lien, J. C.; Huang, L. J.; Huang, T. M.; Tsai, S. C.; Teng, C. M.; Wu, C. C.; Cheng, F. C.; Kuo, S. C. J. Med. Chem. 2001, 44, 3746.
[7] For selected reviews, see:(a) Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. 2011, 111, 6984.
(b) Schmidt, A.; Dreger, A. Curr. Org. Chem. 2011, 15, 1423.
(c) Ma, S.; Zhong, Y.; Wang, S.; Xu, Z.; Chang, M.; Wang, R. Acta Chim. Sinica 2014, 72, 825.(马世雄, 钟源, 王守磊, 许兆青, 常民, 王锐, 化学学报, 2014, 72, 825.)
[8] (a) Stadlbauer, W. Sci. Synth. 2002, 12, 227.
(b) Jacobson, P.; Huber, L. Ber. Dtsch. Chem. Ges. 1908, 41, 660.
(c) Rüchardt, C.; Hassmann, V. Leibigs Ann. Chem. 1980, 908.
(d) Yoshida, T.; Matsuura, N.; Yamamoto, K.; Doi, M.; Shimada, K.; Morie, T.; Kato, S. Heterocycles 1996, 43, 2701.
[9] (a) Lebedev, A. Y.; Khartulyari, A. S.; Voskoboynikov, A. Z. J. Org. Chem. 2005, 70, 596.
(b) Inamoto, K.; Katsuno, M.; Yoshino, T.; Arai, Y.; Hiroya, K.; Sakamoto, T. Tetrahedron 2007, 63, 2695.
(c) Liu, R.; Zhu, Y.; Qin, L.; Ji, S. Synth. Commun. 2008, 38, 249.
(d) Thomé, I.; Besson, C.; Kleine, T.; Bolm, C. Angew. Chem., Int. Ed. 2013, 52, 7509.
[10] (a) Jin, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2007, 46, 3323.
(b) Liu, Z.; Shi, F.; Martinez, P. D. G.; Raminelli, C.; Larock, R. C. J. Org. Chem. 2008, 73, 219.
(c) Li, P.; Zhao, J.; Wu, C.; Larock, R. C.; Shi, F. Org. Lett. 2011, 13, 3340.
(d) Li, P.; Wu, C.; Zhao, J.; Rogness, D. C.; Shi, F. J. Org. Chem. 2012, 77, 3149.
(e) Spiteri, C.; Keeling, S.; Moses, J. E. Org. Lett. 2010, 12, 3368.
[11] (a) Nakano, Y.; Hamaguchi, M.; Nagai, T. J. Org. Chem. 1989, 54, 5912.
(b) Foti, F.; Grassi, G.; Risitano, F. Tetrahedron Lett. 1999, 40, 2605.
(c) Huang, Y. R.; Katzenellenbogen, J. A. Org. Lett. 2000, 2, 2833.
(d) Katritzky, A. R.; Wang, M.; Zhang, S.; Voronkov, M. V.; Steel, P. J. J. Org. Chem. 2001, 66, 6787.
(e) Baldwin, J. E.; Pritchard, G. J.; Rathmell, R. E. J. Chem. Soc., Perkin Trans. 1 2001, 2906.
(f) Grotjahn, D. B.; Van, S.; Combs, D.; Lev, D. A.; Schneider, C.; Rideout, M.; Meyer, C.; Hernandez, G.; Mejorado, L. J. Org. Chem. 2002, 67, 9200.
(g) Aggarwal, V. K.; Vicente, J.; Bonnert, R. V. J. Org. Chem. 2003, 68, 538;
(h) Adamo, M. F. A.; Adlington, R. M.; Baldwin, J. E.; Pritchard, G. J.; Rathmell, R. E. Tetrahedron 2003, 59, 2197.
(i) Heller, S. T.; Natarajan, S. R. Org. Lett. 2006, 8, 2675.
(j) Dirat, O.; Clipson, A.; Elliott, J. M.; Garrett, S.; Jones, A. B.; Reader, M.; Shaw, D. Tetrahedron Lett. 2006, 47, 1729.
(k) Smith, C. D.; Tchabanenko, K.; Adlington, R. M.; Baldwin, J. E. Tetrahedron Lett. 2006, 47, 3209.
(l) Fustero, S.; Román, R.; Sanz-Cervera, J. F.; Simón-Fuentes, A.; Cuñat, A. C.; Villanova, S.; Murguía, M. J. Org. Chem. 2008, 73, 3523.
(m) Fustero, S.; Román, R.; Sanz-Cervera, J. F.; Simón-Fuentes, A.; Bueno, J.; Villanova, S. J. Org. Chem. 2008, 73, 8545.
(n) Liu, H. L.; Jiang, H. F.; Zhang, M.; Yao, W. J.; Zhu, Q. H.; Tang, Z. Tetrahedron Lett. 2008, 49, 3805.
[12] (a) Hao, L.; Hong, J. J.; Zhu, J.; Zhan, Z. P. Chem. Eur. J. 2013, 19, 5715.
(b) Zhu, Y.; Lu, W.-T.; Sun, H. C.; Zhan, Z. P. Org. Lett. 2013, 15, 4146.
(c) Zhang, G.; Ni, H.; Chen, W.; Shao, J.; Liu, H.; Chen, B.; Yu, Y. Org. Lett. 2013, 15, 5967.
(d) Kong, Y.; Tang, M.; Wang, Y. Org. Lett. 2014, 16, 576.
(e) Schneider, Y.; Prévost, J.; Gobin, M.; Legault, C. Y. Org. Lett. 2014, 16, 596.
[13] For recently reviews, see:(a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(b) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.
(c) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 4364.
(d) Bariwal, J.; Eycken, E. V. Chem. Soc. Rev. 2013, 42, 9283.
(e) Louillat, M. L.; Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901.
[14] For selected examples, see:(a) Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932.
(b) Neumann, J. J.; Rakshit, S.; Dröge, T.; Glorius, F. Angew. Chem., Int. Ed. 2009, 48, 6892.
(c) Cho, S. H.; Yoon, J.; Chang, S. J. Am. Chem. Soc. 2011, 133, 5996.
(d) He, G.; Zhao, Y.; Zhang, S.; Lu, C.; Chen, G. J. Am. Chem. Soc. 2012, 134, 3.
(e) Wang, X.; Jin, Y.; Zhao, Y.; Fu, H. Org. Lett. 2012, 14, 452.
(f) Tran, L. D.; Roane, J.; Daugulis, O. Angew. Chem., Int. Ed. 2013, 52, 6043.
(g) Kim, H.; Shin, K.; Chang, S. J. Am. Chem. Soc. 2014, 136, 5904.
[15] (a) Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K. Org. Lett. 2007, 9, 2931.
(b) Hu, J.; Chen, S.; Sun, Y.; Yang, J.; Rao, Y. Org. Lett. 2012, 14, 5030.
(c) Zhang, T.; Bao, W. J. Org. Chem. 2013, 78, 1317.
(d) Li, X.; He, L.; Chen, H.; Wu, W.; Jiang, H. J. Org. Chem. 2013, 78, 3636.
(e) Yu, D. G.; Suri, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 8802.
(f) Han, S.; Shin, Y.; Sharma, S.; Mashra, N. K.; Park, J.; Kim, M.; Kim, M.; Jang, J.; Kim, I. S. Org. Lett. 2014, 16, 2494.
[16] (a) Li, G.; Ding, Z.; Xu, B. Org. Lett. 2012, 14, 5338.
(b) Liu, W.; Hong, X.; Xu, B. Synthesis 2013, 45, 2137.
[17] (a) Huang, X.; Xu, S.; Tan, Q.; Gao, M.; Li, M.; Xu, B. Chem. Commun. 2014, 50, 1465.
(b) Wang, H.; Yu, Y.; Hong, X.; Tan, Q.; Xu, B. J. Org. Chem. 2014, 79, 3279.
(c) Fang, T.; Tan, Q.; Ding, Z.; Liu, B.; Xu, B. Org. Lett. 2014, 16, 2342.
(d) Sun, J.; Tan, Q.; Yang, W.; Liu, B.; Xu, B. Adv. Synth. Catal. 2014, 356, 388.
(e) Qian, G.; Liu, B.; Tan, Q.; Zhang, S.; Xu, B. Eur. J. Org. Chem. 2014, 4837.
(f) Ding, Z.; Tan, Q.; Gao, M.; Xu, B. Org. Biomol. Chem. 2015, 13, 4642.
[18] (a) Henke, B. R.; Willson, T. M.; Sugg, E. E.; Croom, D. K.; Jr. Doughety, R. W.; Queen, K. L.; Birkemo, L. S.; Ervin, G. N.; Grizzle, M. K.; Johnson, M. F.; James, M. K. J. Med. Chem. 1996, 39, 2655.
(b) Sun, J. H.; Teleha, C. A.; Yan, J. S.; Rodgers, J. D.; Nugiel, D. A. J. Org. Chem. 1997, 62, 5627.
(c) Dymock, B. W.; Barril, X.; Brough, P. A.; Cansfield, J. E.; Massey, A.; McDonald, E.; Hubbard, R. E.; Surgenor, A.; Roughley, S. D.; Webb, P.; Workman, P.; Wright, L.; Drysdale, M. J. J. Med. Chem. 2005, 48, 4212.
(d) Collins, I.; Workman, P. Nat. Chem. Biol. 2006, 2, 689.
(e) Zanaletti, R.; Bettinetti, L.; Castaldo, C.; Cocconcelli, G.; Comery, T.; Dunlop, J.; Gaviraghi, G.; Ghiron, C.; Haydar, S. N.; Jow, F.; Maccari, L.; Micco, I.; Nencini, A.; Scali, C.; Turlizzi, E.; Valacchi, M. J. Med. Chem. 2012, 55, 4806.
[19] Qi, Q.; Shen, Q.; Lu, L. J. Am. Chem. Soc. 2012, 134, 6548.
[20] Hu, J.; Xu, H.; Nie, P.; Xie, X.; Nie, Z.; Rao, Y. Chem. Eur. J. 2014, 20, 3932.
[21] Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. J. Am. Chem. Soc. 2010, 132, 13217.
[22] Diethyl phosphate has been reported to be an excellent leaving group and the N-P bond of N-diethoxyphosphoryl hydrazone was labile under basic conditions, see:(a) Wadsworth, W. S.; Emmons, W. D. J. Org. Chem. 1967, 32, 1279.
(b) Koziara, A.; Turski, K.; Zwierzak, A. Synthesis 1986, 298.
(c) Galeta, J.; Man, S.; Bouillon, J. P.; Potá?ek, M. Eur. J. Org. Chem. 2011, 392.
(d) Wen, J.; Yang, C. T.; Jiang, T.; Hu, S.; Yang, T. Z.; Wang, X. L. Org. Lett. 2014, 16, 2398.
[23] A signal at δ-4.81 was observed in the 31P NMR of the reaction mixture after the disappearance of 1a, which is assignable to be diethyl hydrogen phosphate when compared with the 31P NMR spectrum of the authentic sample(δ-4.67). For details, see:Figure S1 and S2 in the supporting information.

文章导航

/