研究论文

酰胺的直接转化:仲酰胺与丹尼谢夫斯基双烯的还原环加成反应

  • 郑剑峰 ,
  • 谢志强 ,
  • 陈欣健 ,
  • 黄培强
展开
  • 福建省化学生物学重点实验室 厦门大学化学化工学院化学生物学系 厦门 361005

收稿日期: 2015-06-06

  网络出版日期: 2015-06-15

基金资助

项目受国家自然科学基金(No. 21332007)、国家基础科学人才培养基金(No. J1310024)、中央高校基本科研业务费专项资金(No. 20720150048)以及教育部长江学者和创新团队发展计划的资助.

Direct Transformation of Amides: Reductive Cycloaddition of Secondary Amides with Danishefsky Diene

  • Jian-Feng Zheng ,
  • Zhi-Qiang Xie ,
  • Xin-Jian Chen ,
  • Pei-Qiang Huang
Expand
  • Fujian Provincial Key Laboratory of Chemical Biology, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005

Received date: 2015-06-06

  Online published: 2015-06-15

Supported by

Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cnProject supported by the National Natural Science Foundation of China (No. 21332007), National Found For Fostering Talents Of Basic Science (No. J1310024), Chinese Universities Scientific Fund (No. 20720150048) and the Program for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education, China.

摘要

酰胺作为稳定的合成中间体被广泛应用于有机合成和药物化学. 因此, 发展通用、化学选择性的酰胺直接转化的方法十分重要. 在本工作中, 我们报道仲酰胺与丹尼谢夫斯基双烯的还原环加成反应, 用于把仲酰胺直接转化为2-取代-2,3-二氢-4-吡啶酮. 该"一瓶反应"包含酰胺通过三氟甲磺酸酐活化、部分还原、和[4+2]环加成反应3个环节. 基于这一步骤经济型方法, 建立了生物碱(±)-lasubine I和(±)-myrtine的简便、无保护基全合成.

本文引用格式

郑剑峰 , 谢志强 , 陈欣健 , 黄培强 . 酰胺的直接转化:仲酰胺与丹尼谢夫斯基双烯的还原环加成反应[J]. 化学学报, 2015 , 73(7) : 705 -715 . DOI: 10.6023/A15060395

Abstract

Amides are widely used as stable synthetic intermediates in organic synthesis and medicinal chemistry. Versatile and chemoselective C—C bond forming methods for the direct transformation of amides are highly demanding. In this paper, we report the reductive cycloaddition of common secondary amides with the Danishefsky diene to produce 2-substituted 2,3-dihydro-4-pyridones. This one-pot procedure involves amide activation with triflic anhydride, partial reduction, and [4+2] cycloaddition. The synthetic utility of this step-econimical method was demonstrated by the short and protecting-group-free total syntheses of alkaloids (±)-lasubine I and (±)-myrtine.

参考文献

[1] For a recent review, see:
(a) Zhou, L.-H.; Lu, W.-J. Acta Chim. Sinica 2015, 73, DOI:10.6023/A15040278. (周励宏, 陆文军, 化学学报, 2015, 73, DOI:10.6023/A15040278.)
(b) Ye, L.-W.; Shu, C.; Gagosz, F. Org. Biomol. Chem. 2014, 12, 1833. For selected examples, see:
(c) Zhou, W.; Qian, P.; Zhao, J.-C.; Fang, H.; Han, J.-L.; Pan, Y. Org. Lett. 2015, 17, 1160.
(d) Peng, B.; Huang, X.-L.; Xie, L.-G.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 8718.
(e) Huang, L.-B.; Wang, Q.; Wu, W.-Q.; Jiang, H.-F. J. Org. Chem. 2014, 79, 7734.
(f) Peng, B.; Geerdink, D.; Farès, C.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 5462.
(g) Jaganathan, A.; Staples, R. J.; Borhan, B. J. Am. Chem. Soc. 2013, 135, 14806.
(h) Medley, J. W.; Movassaghi, M. Org. Lett. 2013, 15, 3614.
(i) Ma, F.; Chen, J.-X. Acta Chim. Sinica 2013, 71, 1118. (马菲, 陈建新, 化学学报, 2013, 71, 1118.)
(j) Zhang, D.; Qin, Y. Acta Chim. Sinica 2013, 71, 147. (张丹, 秦勇, 化学学报, 2013, 71, 147.)
(k) Abels, F.; Lindemann, C.; Koch, E.; Schneider, C. Org. Lett. 2012, 14, 5972.
(l) Medley, J. W.; Movassaghi, M. Angew. Chem., Int. Ed. 2012, 51, 4572.
(m) Song, L.-Y; Liu, K.; Li, C.-Z. Org. Lett. 2011, 13, 3434.
(n) Lundin, P. M.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 11027.
(o) Molander, G. A.; Jean-Gérard, L. J. Org. Chem. 2009, 74, 5446.
(p) Lettan II, R. B.; Galliford, C. V.; Woodward, C. C.; Scheidt, K. A. J. Am. Chem. Soc. 2009, 131, 8805.
(q) Fischer, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 4594.
(r) Cook, G. R.; Beholz, L. G.; Stille, J. R. J. Org. Chem. 1994, 59, 3575.
[2] For a review, see:
(a) Zhu, C.; Wang, R.; Falck, J. R. Chem.-Asian J. 2012, 7, 1502. For selected examples, see:
(b) He, J.; Li, S.-H; Deng, Y.-Q; Fu, H.-Y; Laforteza, B. N.; Spangler, J. E.; Homs, A.; Yu, J.-Q. Science 2014, 343, 1216.
(c) Schoonen, A. K.; Fernández-Ibáñez, M. á.; Fañanás-Mastral, M.; Teichert, J. F.; Feringa, B. L. Org. Biomol. Chem. 2014, 12, 36.
(d) Zhang, L.-S.; Chen, K.; Chen, G.-H.; Li, B.-J.; Luo, S.; Guo, Q.-Y.; Wei, J.-B.; Shi, Z.-J. Org. Lett. 2013, 15, 10.
(e) Smith, K.; El-Hiti, G. A.; Alshammari, M. B. J. Org. Chem. 2012, 77, 11210.
(f) Ryu, J.; Shin, K.; Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem., Int. Ed. 2012, 51, 9904.
(g) Chen, Q.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 428.
(h) Shabashov, D.; Maldonado, J. R. M.; Daugulis, O. J. Org. Chem. 2008, 73, 7818.
(i) Laumer, J. M.; Kim, D. D.; Beak, P. J. Org. Chem. 2002, 67, 6797.
[3] For reviews, see:
(a) Pace, V.; Holzer, W.; Olofsson, B. Adv. Synth. Catal. 2014, 356, 3697.
(b) Sato, T.; Chida, N. Org. Biomol. Chem. 2014, 12, 3147.
(c) Pace, V.; Holzer, W. Aust. J. Chem. 2013, 66, 507.
(d) Seebach, D. Angew. Chem., Int. Ed. 2011, 50, 96.
[4] (a) Xia, Q.; Ganem, B. Org. Lett. 2001, 3, 485.
(b) Xia, Q.; Ganem, B. Tetrahedron Lett. 2002, 43, 1597.
[5] (a) Bélanger, G.; Larouche-Gauthier, R.; Ménard, F.; Nantel, M.; Barabé, F. Org. Lett. 2005, 7, 4431.
(b) Bélanger, G.; Larouche-Gauthier, R.; Ménard, F.; Nantel, M.; Barabé, F. J. Org. Chem. 2006, 71, 704.
[6] Xiao, K.-J.; Luo, J.-M.; Ye, K.-Y.; Wang, Y.; Huang, P.-Q. Angew. Chem., Int. Ed. 2010, 49, 3037.
[7] (a) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592.
(b) Zhou, H.-B.; Liu, G.-S.; Yao, Z.-J. J. Org. Chem. 2007, 72, 6270.
(c) Dong, Q.-L.; Liu, G.-S.; Zhou, H.-B.; Chen, L.; Yao Z.-J. Tetrahedron Lett. 2008, 49, 1636.
(d) Xu, P.; Liu, G.-S.; Xi, J.; Wang, S.-Z.; Yao, Z.-J. Tetrahedron 2011, 67, 5455.
(e) Xiao, K.-J.; Wang, A.-E; Huang, P.-Q. Angew. Chem., Int. Ed. 2012, 51, 8314.
(f) Huang, P.-Q.; Huang, Y.-H.; Xiao, K.-J.; Wang, Y.; Xia, X.-E. J. Org. Chem. 2015, 80, 2861.
(g) Nakajima, M.; Sato, T.; Chida, N. Org. Lett. 2015, 17, 1696.
[8] (a) Oda, Y.; Sato, T.; Chida, N. Org. Lett. 2012, 14, 950.
(b) Xiao, K.-J.; Wang, Y.; Huang, Y.-H.; Wang, X.-G.; Huang, P.-Q. J. Org. Chem. 2013, 78, 8305.
(c) Deng, H.-Q.; Qian, X.-Y.; Li, Y.-X.; Zheng, J.-F.; Xie, L.-F.; Huang, P.-Q. Org. Chem. Front. 2014, 1, 258.
(d) Mao. Z.-Y.; Huang, S.-Y.; Gao, L.-H.; Wang, A.-E; Huang, P.-Q. Sci. China Chem. 2014, 57, 252.
(e) Romanens, A.; Bélanger, G. Org. Lett. 2015, 17, 322.
(f) Huang, P.-Q; Geng, H; Tian, Y.-S; Peng, Q.-R.; Xiao, K.-J. Sci. China Chem. 2015, 58, 478.
[9] For reductive alkylation/functionalization of N-alkoxylamides, see:
(a) Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Angew. Chem. Int. Ed. 2010, 49, 6369.
(b) Vincent, G.; Guillot, R.; Kouklovsky, C. Angew. Chem., Int. Ed. 2011, 50, 1350.
(c) Yanagita, Y.; Nakamura, H.; Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Chem.–Eur. J. 2013, 19, 678.
(d) Vincent, G.; Karila, D.; Khalil, G.; Sancibrao, P.; Gori, D.; Kouklovsky, C. Chem.-Eur. J. 2013, 19, 9358.
(e) Jäkel, M.; Qu, J.-P.; Schnitzer, T.; Helmchen, G. Chem.-Eur. J. 2013, 19, 16746.
(f) Shirokane, K.; Wada, T.; Yoritate, M.; Minamikawa, R.; Takayama, N.; Sato, T.; Chida, N. Angew. Chem., Int. Ed. 2014, 53, 512.
(g) Nakajima, M.; Oda, Y.; Wada, T.; Minamikawa, R.; Shirokane, K.; Sato, T.; Chida, N. Chem.-Eur. J. 2014, 20, 17565.
(h) ref. 7g.
(i) Shirokane, K.; Tanaka, Y.; Yoritate, M.; Takayama, N.; Sato, T.; Chida, N. Bull. Chem. Soc. Jpn. 2015, 88, 522.
[10] (a) Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228.
(b) Xiao, K.-J.; Wang, A.-E; Huang, Y.-H.; Huang, P.-Q. Asian J. Org. Chem. 2012, 1, 130.
(c) Xiao, K.-J.; Huang, Y.-H.; Huang, P.-Q. Acta Chim. Sinica 2012, 70, 1917. (肖开炯, 黄应红, 黄培强, 化学学报, 2012, 70, 1917.)
(d) Pace, V.; Castoldi, L.; Holzer, W. Chem. Commun. 2013, 49, 8383.
[11] (a) Madelaine, C.; Valerio, V.; Maulide, N. Angew. Chem., Int. Ed. 2010, 49, 1583.
(b) Valerio, V.; Madelaine, C.; Maulide, N. Chem.-Eur. J. 2011, 17, 4742.
(c) Peng, B.; Geerdink, D.; Maulide, N. J. Am. Chem. Soc. 2013, 135, 14968. See also:
(d) Valerio, V.; Petkova, D.; Madelaine, C.; Maulide, N. Chem.-Eur. J. 2013, 19, 2606.
[12] (a) Jakubec, P.; Hawkins, A.; Felzmann, W.; Dixon, D. J. J. Am. Chem. Soc. 2012, 134, 17482.
(b) Gregory, A. W.; Chambers, A.; Hawkins, A.; Jakubec, P.; Dixon, D. J. Chem.-Eur. J. 2015, 21, 111.
[13] Huang, P.-Q.; Ou, W.; Xiao, K.-J.; Wang, A.-E Chem. Commun. 2014, 50, 8761.
[14] Huang, P.-Q.; Lang, Q.-W.; Wang, A.-E.; Zheng, J.-F. Chem. Commun. 2015, 51, 1096.
[15] (a) Alder, K. Neuer Methodender Praperative Organischen Chemie, Verlag Chemie: Weinheim/Bergstr., 1943. For recent reviews, see:
(b) Sarmah, M. M.; Prajapati, D. Curr. Org. Chem. 2014, 18, 1586.
(c) Masson, G.; Lalli, C.; Benohoud, M.; Dagousset, G. Chem. Soc. Rev. 2013, 42, 902.
(d) Memeo, M. G.; Quadrelli, P. Chem.-Eur. J. 2012, 18, 12554.
(e) Girling, P. R.; Kiyoi, T.; Whiting, A. Org. Biomol. Chem. 2011, 9, 3105.
[16] (a) Kerwin, J. F. Jr.; Danishefsky, S. Tetrahedron Lett. 1982, 23, 3739.
(b) Danishefsky, S.; Kerwin, J. F. Jr. J. Org. Chem. 1982, 47, 3183.
[17] For selected examples, see:
(a) Waldmann, H.; Braun, M. J. Org. Chem. 1992, 57, 4444.
(b) Hattori, K.; Yamamoto, H. Synlett 1993, 129.
(c) Hattori, K.; Yamamoto, H. Tetrahedron 1993, 49, 1749.
(d) Kobayashi, S.; Komiyama, S.; Ishitani, H. Angew. Chem., Int. Ed. 1998, 37, 979.
(e) Kaw?cki, R. Synthesis 2001, 828.
(f) Yuan, Y.; Li, X.; Ding, K.-L. Org. Lett. 2002, 4, 3309.
(g) Timmons, C.; Kattuboina, A.; McPherson, L.; Mills, J.; Li, G.-G. Tetrahedron 2005, 61, 11837.
(h) Andreassen, T.; Haland, T.; Hansen, L. K.; Gautun, O. R. Tetrahedron Lett. 2007, 48, 8413.
(i) Newman, C. A.; Antilla, J. C.; Chen, P.; Predeus, A. V.; Fielding, L.; Wulff, W. D. J. Am. Chem. Soc. 2007, 129, 7216.
(j) Shang, D.-J.; Xin, J.-G.; Liu, Y.-L.; Zhou, X.; Liu, X.-H.; Feng, X.-M. J. Org. Chem. 2008, 73, 630.
(k) Alaimo, P. J.; O’Brien III, R.; Johnson, A. W.; Slauson, S. R.; O’Brien, J. M.; Tyson, E. L.; Marshall, A.-L.; Ottinger, C. E.; Chacon, J. G.; Wallace, L.; Paulino, C. Y.; Connell, S. Org. Lett. 2008, 10, 5111.
(l) Cui, B.; Kong, S.-S.; Wu, G.-P.; Miao, Z.-W.; Chen, R.-Y. Synthesis 2012, 44, 111.
(m) Olmos, A.; Louis, B.; Pale, P. Chem.-Eur. J. 2012, 18, 4894.
(n) Shao, J.; Yang, J.-S. J. Org. Chem. 2012, 77, 7891.
(o) Chen, B.-L.; Wang, B.; Lin, G.-Q. Sci. China Chem. 2014, 57, 945.
(p) Takeda, Y.; Hisakuni, D.; Lin, C.-H.; Minakata, S. Org. Lett. 2015, 17, 318.
[18] (a) Joseph, S.; Comins, D. L. Curr. Opin. Drug Disc. 2002, 5, 870.
(b) Ege, M.; Wanner, K. T. Org. Lett. 2004, 6, 3553.
[19] For a recent account, see:
(a) Wang A.-E; Huang, P.-Q. Pure Appl. Chem. 2014, 86, 1227. For selected recent examples, see:
(b) Huang, P.-Q.; Huang, S.-Y.; Gao, L.-H.; Mao, Z.-Y.; Chang, Z.; Wang, A.-E Chem. Commun. 2015, 51, 4576.
(c) Luo, S.-P.; Peng, Q.-L.; Xu, C.-P.; Wang, A.-E; Huang, P.-Q. Chin. J. Chem. 2014, 32, 757.
(d) Wang, X.-G.; Wang, A.- E; Huang, P.-Q. Chin. Chem. Lett. 2014, 25, 193.
[20] For a review, see: Baraznenok, I. L.; Nenajdenko, V. G.; Balenkova, E. S. Tetrahedron 2000, 56, 3077.
[21] During the preparation of this manuscript, a Schwartz’s reagent-mediated one-pot reduction/Mannich/Michael sequence of lactams appeared: Szczesńiak, P.; Stecko, S.; Maziarz, E.; Staszewska-Krajewska, O.; Furman, B. J. Org. Chem. 2014, 79, 10487.
[22] (a) Fry, J. L. J. Chem. Soc., Chem. Commun. 1974, 45.
(b) Fry, J. L.; Ott, R. A. J. Org. Chem. 1981, 46, 602.
[23] Ali, T.; Chauhan, K. K.; Frost, C. G. Tetrahedron Lett. 1999, 40, 5621.
[24] (a) Shenvi, R. A.; O'Malley, D. P.; Baran, P. S. Acc. Chem. Res. 2009, 42, 530.
(b) Afagh, N. A.; Yudin, A. K. Angew. Chem., Int. Ed. 2010, 49, 262.
[25] (a) Fuji, K.; Yamada, T.; Fujita, E.; Murata, H. Chem. Pharm. Bull. 1978, 26, 2515.
(b) Slosse, P.; Hootele, C. Tetrahedron Lett. 1978, 19, 397.
[26] (a) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139.
(b) Michael, J. P. Nat. Prod. Rep. 2007, 24, 191.
[27] For racemic syntheses, see:
(a) Iida, H.; Tanaka, M.; Kibayashi, C. J. Org. Chem. 1984, 49, 1909.
(b) Beckwith, A. L. J.; Joseph, S. P.; Mayadunne, R. T. A. J. Org. Chem. 1993, 58, 4198.
(c) Roland, R. Beil. J. Org. Chem. 2007, 3, 32. For asymmetric syntheses, see:
(d) Comins, D. L.; LaMunyon, D. H. J. Org. Chem. 1992, 57, 5807.
(e) Chalard, P.; Remuson, R.; Mialhe, Y. G.; Remuson, J. C. Tetrahedron: Asymmetry 1998, 9, 4361.
(f) Ratni, H.; Rao, A.; Kundig, E. P. Org. Lett. 1999, 1, 1997.
(g) Davis, F. A.; Rao, A.; Carroll, P. J. Org. Lett. 2003, 5, 3855.
(h) Liu, S.-Y.; Fan, Y.-P.; Peng, X.-X.; Wang, W.; Hua, W-Y.; Akber, H-J.; Liao, L.-X. Tetrahedron Lett. 2006, 47, 7681.
(i) Mancheno, O. G.; Arrayas, R. G.; Adrio J.; Carretero, J. C. J. Org. Chem. 2007, 72, 10294.
(j) Naoki, Y.; Masakazu, A.; Chihiro, K.; Sakae, A. Heterocycles 2009, 79, 433.
[28] For racemic syntheses, see:
(a) Slosse, P.; Hootele, C. Tetrahedron Lett. 1979, 20, 4587.
(b) Comins, D. L.; LaMunyon, D. H. Tetrahedron Lett. 1989, 30, 5053.
(c) Pilli, R. A.; Dias, L. C.; Maldaner, A. O. Tetrahedron Lett. 1993, 34, 2729.
(d) Pilli, R. A.; Dias, L. C.; Maldaner, A. O. J. Org. Chem. 1995, 60, 717.
(e) Back, T. G.; Hamilton, M. D.; Lim, V. J. J.; Parvez, M. J. Org. Chem. 2005, 70, 967. For asymmetric syntheses, see:
(f) Comins, D. L.; LaMunyon, D. H. J. Org. Chem. 1992, 57, 5807.
(g) Gardette, D.; Gelas-Mialhe, Y.; Gramain, J.-C.; Perrin, B.; Remuson, R. Tetrahedron: Asymmetry 1998, 9, 1823.
(h) ref. 27c.
(i) Davis, F. A.; Xu, H.; Zhang, J. J. Org. Chem. 2007, 72, 2046.
(j) Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Org. Biomol. Chem. 2008, 6, 3464.
(k) Ying, Y.; Kim, H.; Hong, J. Org. Lett. 2011, 13, 796.
(l) Fustero, S.; Moscardó, J.; Sánchez-Roselló, M.; Flores, S.; Guerola, M. Tetrahedron 2011, 67, 7412.
(m) Vu, V. H.; Louafi, F.; Girard, N.; Marion, R.; Roisnel, T.; Dorcet, V.; Hurvois, J.-P. J. Org. Chem. 2014, 79, 3358.Giese, B.; Kopping, B.; Chatgilialoglu, C. Tetrahedron Lett. 1989, 30, 681.

文章导航

/