收稿日期: 2015-01-09
网络出版日期: 2015-02-06
基金资助
项目受山东省优秀中青年科学家科研奖励基金(BS2014CL035)的资助.
Advances in Porous Organic Catalysis
Received date: 2015-01-09
Online published: 2015-02-06
Supported by
Project supported by the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (BS2014CL035).
有机多孔材料POPs (Porous Organic Polymers)成为近年来的研究前沿之一. 有机多孔材料包括非晶型(如CMP, HCP, PIM等)和晶型(比如COFs等)有机多孔材料两类, 它们具有优异的孔性质、较大的比表面积、稳定性好、重量轻以及易于功能化等诸多优点, 被广泛应用于气体存储分离、传感、有机光电和多相催化等重要领域. 这里对有机多孔材料在多相催化领域中的应用做一综述. 目前, 有机多孔催化领域的研究工作主要有三类: 一类是通过“自下而上”策略将金属-配体类催化剂嵌入有机多孔骨架来构建多相催化剂; 另一类是将有机多孔材料作为载体, 通过后修饰方式负载金属纳米颗粒构建多相催化剂; 最后一类是通过“自下而上”策略将不含金属的有机小分子催化剂嵌入材料骨架来构建多孔有机催化剂. 受益于其结构的优越性, 有机多孔材料在多相催化中表现出优异的催化性能. 借鉴于均相催化的发展, 具有催化活性的有机多孔材料在多相催化领域中的应用也将会有更大的发展空间.
王昌安 , 王为 . 有机多孔催化研究进展[J]. 化学学报, 2015 , 73(6) : 498 -529 . DOI: 10.6023/A15010019
Porous organic polymers (POPs) have become one of a frontier of the research in recent years. POPs including amorphous (e.g. CMP, HCP, PIM, etc.) and crystalline (e.g. COF) porous organic polymers. Due to their inherent porosity, large specific surface area, light weight and easy functionalization at the molecular level, POPs have recently received significant attention for potential applications in gas storage/separation, organic photoelectric, sensoring and heterogeneous catalysis. Here, this review focus on recent developments of POPs in heterogeneous catalysis. Currently, the research on the application of POPs for heterogeneous catalysis is classified into three sections: (a) “bottom-up” embedding metal-ligand catalyst into POPs for heterogeneous catalysis; (b) the encapsulation of metal nanoparticles into POPs for heterogeneous catalysis; (c) “bottom-up” embedding organocatalyst into POPs for heterogeneous organocatalysis. Benefiting from its structural superiority, these functional POPs exhibit excellent catalytic activity. Reference to the development of homogeneous catalysis, the application of functional POPs for heterogeneous catalysis will also have more room for development.
[1] Thomas, A. Angew. Chem., Int. Ed. 2010, 49, 8328.
[2] Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294.
[3] Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477.
[4] Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.
[5] Meng, X.; Xiao, F.-S. Chem. Rev. 2013, 114, 1521.
[6] Van Der Voort, P.; Esquivel, D.; De Canck, E.; Goethals, F.; Van Driessche, I.; Romero-Salguero, F. J. Chem. Soc. Rev. 2013, 42, 3913.
[7] Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.
[8] (a) Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem., Int. Ed. 2007, 46, 8574.
(b) Cooper, A. I. Adv. Mater. 2009, 21, 1.
[9] (a) Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
(b) Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
(c) Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.
[10] Dawson, R.; Cooper, A. I.; Adams, D. J. Prog. Polym. Sci. 2012, 37, 530.
[11] McKeown, N. B.; Budd, P. M. Macromolecules 2010, 43, 5163.
[12] Davankov, V. A.; Tsyurupa, M. P. React. Polym. 1990, 13, 27.
[13] McKeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675.
[14] (a) Li, A.; Lu, R.-F.; Wang, Y.; Wang, X.; Han, K.-L.; Deng, W.-Q. Angew. Chem., Int. Ed. 2010, 49, 3330.
(b) Chen, Q.; Luo, M.; Hammershoj, P.; Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C-G.; Han, B-H. J. Am. Chem. Soc. 2012, 134, 6084.
(c) Song, J.; Huang, Z.; Zheng, Q. Chin. J. Chem. 2013, 31, 577.
(d) Cui, Y.; Zhao, Y.; Wang, T.; Han, B. Chin. J. Chem. 2015, 33, 131.
[15] Ghanem, B. S.; McKeown, N. B.; Budd, P. M.; Selbie, J. D.; Fritsch, D Adv. Mater. 2008, 20, 2766.
[16] (a) Ben, T.; Shi, K.; Cui, Y.; Pei, C.; Zuo, Y.; Guo, H.; Zhang, D.; Xu, J.; Deng, F.; Tian, Z.; Qiu, S. J. Mater. Chem. 2011, 21, 18208;
(b) Liu, X.; Xu, Y.; Jiang, D. J. Am. Chem. Soc. 2012, 134, 8738.
[17] (a) Weber, J.; Thomas, A. J. Am. Chem. Soc. 2008, 130, 6334.
(b) Chen, L.; Honsho, Y.; Seki, S.; Jiang, D. J. Am. Chem. Soc. 2010, 132, 6742.
(c) Xu, Y.; Chen, L.; Guo, Z.; Nagai, A.; Jiang, D. J. Am. Chem. Soc. 2011, 133, 17622.
(d) Patra, A.; Scherf, U. Chem. Eur. J. 2012, 18, 10074.
[18] (a) Kaur, P.; Hupp, J. T.; Nguyen, S. T ACS Catal. 2011, 1, 819.
(b) Zhang, Y.; Riduan, S. N. Chem. Soc. Rev. 2012, 41, 2083.
(c) Rose, M. ChemCatChem 2014, 6, 1166.
[19] Meunier, B. Chem. Rev. 1992, 92, 1411.
[20] McKeown, N. B.; Hanif, S.; Msayib, K.; Tattershall, C. E.; Budd, P. M. Chem. Commun. 2002, 2782.
[21] Mackintosh, H. J.; Budd, P. M.; McKeown, N. B. J. Mater. Chem. 2008, 18, 573.
[22] Makhseed, S.; Al-Kharafi, F.; Samuel, J.; Ateya, B. Catal. Commun. 2009, 10, 1284.
[23] Chen, L.; Yang, Y.; Jiang, D. J. Am. Chem. Soc. 2010, 132, 9138.
[24] Chen, L.; Yang, Y.; Guo, Z.; Jiang, D. Adv. Mater. 2011, 23, 3149.
[25] Shultz, A. M.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Chem. Sci. 2011, 2, 686.
[26] Saha, B.; Gupta, D.; Abu-Omar, M. M.; Modak, A.; Bhaumik, A. J. Catal. 2013, 299, 316.
[27] Modak, A.; Nandi, M.; Mondal, J.; Bhaumik, A. Chem. Commun. 2012, 48, 248.
[28] Totten, R. K.; Kim, Y.-S.; Weston, M. H.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. J. Am. Chem. Soc. 2013, 135, 11720.
[29] Feng, L-J.; Chen, Q.; Zhu, J-H.; Liu, D-P.; Zhao, Y-C.; Han, B.-H. Polym. Chem. 2014, 5, 3081.
[30] Zhang, W.; Jiang, P.; Wang, Y.; Zhang, J.; Zhang, P. Catal. Sci. Technol. 2015, 5, 101.
[31] Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464.
[32] Budd, P. M.; Ghanem, B.; Msayib, K.; McKeown, N. B.; Tattershall, C. J. Mater. Chem. 2003, 13, 2721.
[33] Palkovits, R.; Antonietti, M.; Kuhn, P.; Thomas, A.; Schüth, F. Angew. Chem., Int. Ed. 2009, 48, 6909.
[34] Xie, Z.; Wang, C.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2011, 133, 2056.
[35] Jiang, J.-X.; Wang, C.; Laybourn, A.; Hasell, T.; Clowes, R.; Khimyak, Y. Z.; Xiao, J.; Higgins, S. J.; Adams, D. J.; Cooper, A. I. Angew. Chem., Int. Ed. 2011, 50, 1072.
[36] Wang, J.-L.; Wang, C.; deKrafft, K. E.; Lin, W. ACS Catal. 2012, 2, 417.
[37] (a) Pierpont, C. G. Inorg. Chem. 2011, 50, 9766;
(b) Raymond, K. N.; Isied, S. S.; Brown, L. D.; Fronczek, F. R.; Nibert, J. H. J. Am. Chem. Soc. 1976, 98, 1767.
[38] Weston, M. H.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Nguyen, S. T. Chem. Mater. 2012, 24, 1292.
[39] Weston, M. H.; Peterson, G. W.; Browe, M. A.; Jones, P.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Chem. Commun. 2013, 49, 2995.
[40] Tanabe, K. K.; Siladke, N. A.; Broderick, E. M.; Kobayashi, T.; Goldston, J. F.; Weston, M. H.; Farha, O. K.; Hupp, J. T.; Pruski, M.; Mader, E. A.; Johnson, M. J. A.; Nguyen, S. T. Chem. Sci. 2013, 4, 2483.
[41] Kraft, S. J.; Sánchez, R. H.; Hock, A. S. ACS Catal. 2013, 3, 826.
[42] Totten, R. K.; Weston, M. H.; Park, J. K.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. ACS Catal. 2013, 3, 1454.
[43] Kraft, S. J.; Zhang, G.; Childers, D.; Dogan, F.; Miller, J. T.; Nguyen, S. T.; Hock, A. S. Organometallics 2014, 33, 2517.
[44] Xie, Y.; Liu, X.-H.; Zou, K.; Deng, W.-Q. Nat. Commun. 2013, 4, 1960.
[45] Li, H.; Xu, B.; Liu, X.; Sigen, A.; He, C.; Xia, H.; Mu, Y. J. Mater. Chem. A 2013, 1, 14108.
[46] Lin, J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I. J. B. Chem. Rev. 2009, 109, 3561.
[47] Thiel, K.; Zehbe, R.; Roeser, J.; Strauch, P.; Enthaler, S.; Thomas, A. Polym. Chem. 2013, 4, 1848.
[48] Zhang, C.; Wang, J-J.; Liu, Y.; Ma, H.; Yang, X-L.; Xu, H-B. Chem. Eur. J. 2013, 19, 5004.
[49] Wang, W.; Zheng, A.; Zhao, P.; Xia, C.; Li, F. ACS Catal. 2013, 4, 321.
[50] Zhang, Y.; Riduan, S. N.; Ying, J. Y. Chem. Eur. J. 2009, 15, 1077.
[51] Ding, S.-Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.-G.; Su, C.-Y.; Wang, W. J. Am. Chem. Soc. 2011, 133, 19816.
[52] (a) Li, B.; Guan, Z.; Wang, W.; Yang, X.; Hu, J.; Tan, B.; Li, T. Adv. Mater. 2012, 24, 3390.
(b) Guan, Z.; Li, B.; Hai, G.; Yang, X.; Li, T.; Tan, B. RSC Adv. 2014, 4, 36437.
[53] Lei, Y.; Wu, L.; Zhang, X.; Mei, H.; Gu, Y.; Li, G. J. Mol. Catal. A: Chem. 2015, 398, 164.
[54] Puthiaraj, P.; Pitchumani, K. Chem. Eur. J. 2014, 20, 8761.
[55] Ding, K. L. Acta Chim. Sinica 2014, 72, 755. (丁奎岭, 化学学报, 2014, 72, 755.)
[56] Xie, J. H.; Zhou, Q. L. Acta Chim. Sinica 2014, 72, 778. (谢建华, 周其林, 化学学报, 2014, 72, 778.)
[57] Trindade, A. F.; Gois, P. M. P.; Afonso, C. A. M. Chem. Rev. 2009, 109, 418.
[58] Ma, L.; Wanderley, M. M.; Lin, W. ACS Catal. 2011, 1, 691.
[59] Sun, Q.; Meng, X.; Liu, X.; Zhang, X.; Yang, Y.; Yang, Q.; Xiao, F.-S. Chem. Commun. 2012, 48, 10505.
[60] Verde-Sesto, E.; Pintado-Sierra, M.; Corma, A.; Maya, E. M.; dela Campa, J. G.; Iglesias, M.; Sánchez, F. Chem. Eur. J. 2014, 20, 5111.
[61] An, W.-K.; Han, M.-Y.; Wang, C.-A.; Yu, S.-M.; Zhang, Y.; Bai, S.; Wang, W. Chem. Eur. J. 2014, 20, 11019.
[62] Wang, X.; Liu, Y.; Cui, Y. Bull. Chem. Soc. Jpn. 2014, 87, 435.
[63] Dong, J.; Liu, Y.; Cui, Y. Chem. Commun. 2014, 50, 14949.
[64] Schmidt, J.; Weber, J.; Epping, J. D.; Antonietti, M.; Thomas, A. Adv. Mater. 2009, 21, 702.
[65] Hasell, T.; Wood, C. D.; Clowes, R.; Jones, J. T. A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Chem. Mater. 2009, 22, 557.
[66] Chan-Thaw, C. E.; Villa, A.; Katekomol, P.; Su, D.; Thomas, A.; Prati, L. Nano Lett. 2010, 10, 537.
[67] Chan-Thaw, C. E.; Villa, A.; Prati, L.; Thomas, A. Chem. Eur. J. 2011, 17, 1052.
[68] Zhang, P.; Weng, Z.; Guo, J.; Wang, C. Chem. Mater. 2011, 23, 5243.
[69] Bhunia, M. K.; Das, S. K.; Pachfule, P.; Banerjee, R.; Bhaumik, A. Dalton Trans. 2012, 41, 1304.
[70] Zhang, Q.; Yang, Y.; Zhang, S. Chem. Eur. J. 2013, 19, 10024.
[71] Liang, Q.; Liu, J.; Wei, Y.; Zhao, Z.; MacLachlan, M. J. Chem. Commun. 2013, 49, 8928.
[72] Zhong, H.; Gong, Y.; Zhang, F.; Li, L.; Wang, R. J. Mater. Chem. A 2014, 2, 7502.
[73] Puthiaraj, P.; Pitchumani, K. Green Chem. 2014, 16, 4223.
[74] Modak, A.; Pramanik, M.; Inagaki, S.; Bhaumik, A. J. Mater. Chem. A, 2014, 2, 11642.
[75] Li, L.; Chen, Z.; Zhong, H.; Wang, R. Chem. Eur. J. 2014, 20, 3050.
[76] Wang, F.; Mielby, J.; Richter, F. H.; Wang, G.; Prieto, G.; Kasama, T.; Weidenthaler, C.; Bongard, H.-J.; Kegnæs, S.; Fürstner, A.; Schüth, F. Angew. Chem., Int. Ed. 2014, 53, 8645.
[77] Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2012, 134, 19524.
[78] Pachfule, P.; Panda, M. K.; Kandambeth, S.; Shivaprasad, S. M.; Diaz, D. D.; Banerjee, R. J. Mater. Chem. A 2014, 2, 7944.
[79] Pachfule, P.; Kandambeth, S.; Diaz, D. D.; Banerjee, R. Chem. Commun. 2014, 50, 3169.
[80] Thote, J.; Aiyappa, H. B.; Deshpande, A.; Diaz, D. D.; Kurungot, S.; Banerjee, R. Chem.Eur. J. 2014, 20, 15961.
[81] MacMillan, D. W. C. Nature 2008, 455, 304.
[82] Du, X.; Sun, Y.; Tan, B.; Teng, Q.; Yao, X.; Su, C.; Wang, W. Chem. Commun. 2010, 46, 970.
[83] Zhang, Y.; Zhang, Y.; Sun, Y. L.; Du, X.; Shi, J. Y.; Wang, W. D.; Wang, W. Chem. Eur. J. 2012, 18, 6328.
[84] Roeser, J.; Kailasam, K.; Thomas, A. ChemSusChem 2012, 5, 1793.
[85] Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem., Int. Ed. 2008, 47, 3450.
[86] Katekomol, P.; Roeser, J.; Bojdys, M.; Weber, J.; Thomas, A. Chem. Mater. 2013, 25, 1542.
[87] Merino, E.; Verde-Sesto, E.; Maya, E. M.; Iglesias, M.; Sánchez, F.; Corma, A. Chem. Mater. 2013, 25, 981.
[88] Modak, A.; Mondal, J.; Bhaumik, A. Appl. Catal. A: Gen. 2013, 459, 41.
[89] Liu, X.; Sigen, A.; Zhang, Y.; Luo, X.; Xia, H.; Li, H.; Mu, Y. RSC Adv. 2014, 4, 6447.
[90] Modak, A.; Mondal, J.; Bhaumik, A. ChemCatChem 2013, 5, 1749.
[91] Suresh, V. M.; Bonakala, S.; Atreya, H. S.; Balasubramanian, S.; Maji, T. K. ACS Appl. Mater. Interfaces 2014, 6, 4630.
[92] Liu, B.; Ben, T.; Xu, J.; Deng, F.; Qiu, S. New J. Chem. 2014, 38, 2292.
[93] Zhang, Y.; Li, B.; Ma, S. Chem. Commun. 2014, 50, 8507.
[94] Fang, Q.; Gu, S.; Zheng, J.; Zhuang, Z.; Qiu, S.; Yan, Y. Angew. Chem., Int. Ed. 2014, 53, 2878.
[95] Shinde, D. B.; Kandambeth, S.; Pachfule, P.; Kumar, R. R.; Banerjee, R. Chem. Commun. 2015, 51, 310.
[96] Zhang, K.; Kopetzki, D.; Seeberger, P. H.; Antonietti, M.; Vilela, F.,Angew. Chem. Int. Ed. 2013, 52, 1432.
[97] Urakami, H.; Zhang, K.; Vilela, F. Chem. Commun. 2013, 49, 2353.
[98] Kang, N.; Park, J. H.; Ko, K. C.; Chun, J.; Kim, E.; Shin, H.-W.; Lee, S. M.; Kim, H. J.; Ahn, T. K.; Lee, J. Y.; Son, S. U. Angew. Chem., Int. Ed. 2013, 52, 6228.
[99] Jiang, J.-X.; Li, Y.; Wu, X.; Xiao, J.; Adams, D. J.; Cooper, A. I. Macromolecules 2013, 46, 8779.
[100] Bleschke, C.; Schmidt, J.; Kundu, D. S.; Blechert, S.; Thomas, A. Adv. Synth. Catal. 2011, 353, 3101.
[101] Kundu, D. S.; Schmidt, J.; Bleschke, C.; Thomas, A.; Blechert, S., Angew. Chem. Int. Ed. 2012, 51, 5456.
[102] Wang, C. A.; Zhang, Z. K.; Yue, T.; Sun, Y. L.; Wang, L.; Wang, W. D.; Zhang, Y.; Liu, C.; Wang, W. Chem. Eur. J. 2012, 18, 6718.
[103] Wang, C. A.; Zhang, Y.; Wang, W. unpublished result.
[104] Schmidt, J.; Kundu, D. S.; Blechert, S.; Thomas, A. Chem. Commun. 2014, 50, 3347.
[105] Xu, H.; Chen, X.; Gao, J.; Lin, J.; Addicoat, M.; Irle, S.; Jiang, D. Chem. Commun. 2014, 50, 1292.
[106] Cho, H. C.; Lee, H. S.; Chun, J.; Lee, S. M.; Kim, H. J.; Son, S. U. Chem. Commun. 2011, 47, 917.
[107] Zhang, Q.; Zhang, S.; Li, S. Macromolecules 2012, 45, 2981.
[108] Tan, M. X.; Gu, L.; Li, N.; Ying, J. Y.; Zhang, Y. Green Chem. 2013, 15, 1127.
/
〈 |
|
〉 |