综述

高温超导材料的表界面化学研究

  • 聂彩娜 ,
  • 马旭村
展开
  • a 清华大学物理系低维量子物理国家重点实验室 北京 100084;
    b 中国科学院物理研究所表面物理国家重点实验室 北京 100190

收稿日期: 2015-01-29

  网络出版日期: 2015-06-29

基金资助

项目受国家自然科学基金(No. 11374336)资助.

Surface/Interface Issues of Superconducting Materials

  • Nie Caina ,
  • Ma Xucun
Expand
  • a State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084;
    b State Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190

Received date: 2015-01-29

  Online published: 2015-06-29

Supported by

Project supported by the National Natural Science Foundation of China (No. 11374336).

摘要

超导现象早在1911年就为世人所知. 基于超导材料和超导技术广阔的应用前景, 一百多年来来自物理、化学、材料等不同领域的研究者们一直为发现新的、高超导转变温度(甚至室温)的超导材料而不断努力. 同时, 超导材料的表界面研究工作也越来越受到关注. 本文首先介绍了过去国内外研究者在铜基氧化物超导材料表面的一些分子吸附研究工作, 随后总结了最近在超导薄膜体系中界面效应对提高超导转变温度及其研究超导机制的意义, 着重揭示了表面/界面在超导研究和发展中的重要性.

本文引用格式

聂彩娜 , 马旭村 . 高温超导材料的表界面化学研究[J]. 化学学报, 2015 , 73(7) : 669 -678 . DOI: 10.6023/A15010080

Abstract

Superconductivity was discovered in 1911. Due to the greatly potential applications of superconducting materials and superconducting techniques, researchers from physical, chemical, and materials sciences have been working hard to achieve new superconducting materials with high superconducting transition temperature and even up to room temperature. Meanwhile, the surface/interface issue in superconducting materials has been paid more and more attention. In this paper, a brief summary is made about the previous works on the surface adsorption of copper-oxide superconductors. Then, interface effect is introduced and demonstrated to play an important role in increasing transition temperature and clarifying the superconductivity mechanism in superconducting films. The importance of the surface/interface effect is largely highlighted in the research and development of the superconducting materials.

参考文献

[1] Onnes, H. K. Leiden Comm. 1911, 120b, 122b, 124c.
[2] Meissner, W.; Ochsenfeld, R. Naturwiss 1933, 21, 787.
[3] Bednorz, G.; Müller, K. A. Z. Phys. B 1986, 64, 189.
[4] Zhao, Z.-X.; Chen, L.-Q.; Yang, Q.-S.; Huang, Y.-Z.; Chen, G.-H.; Tang, R.-M.; Liu, G.-R.; Cui, C.-G.; Chen, L.; Wang, L.-Z.; Guo, S.-Q.; Li, S.-L.; Bi, J.-Q. Chin. Sci. Bull. 1987, 32, 412. (赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清, 科学通报, 1987, 32, 412.)
[5] Wu, M. K.; Ashburn, J. R.; Torng, C. J. Phys. Rev. Lett. 1987, 58, 908.
[6] Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. J. Am. Chem. Soc. 2008, 130, 3296.
[7] Takahashi, H.; Igawa, K.; Arii, K.; Kamihara, Y.; Hirano, M.; Hosono, H. Nature 2008, 453, 376.
[8] Ren, Z. A.; Lu, W.; Yang, J.; Yi, W.; Shen, X. L.; Li, Z. C.; Che, G. C.; Dong, X. L.; Sun, L. L.; Zhou, F.; Zhao, Z.-X. Chin. Phys. Lett. 2008, 25, 2215.
[9] Phelps, R. B.; Kesmodel, L. L.; Kelley, R. J. Surf. Sci. 1995, 340, 134.
[10] Antonchenko, V. Y.; Davydov, A. S.; Ilyin, V. V. The Basis of Water Physics, NauKova Dumka, Kiev, 1991, p. 668.
[11] Gennes, P. G. D. Physics of Liquid Crystals, Mir., Moscow, 1984, p. 326.
[12] Kurtz, R. L.; Stockbauer, R.; Madey, T. E. Phys. Rev. B 1988, 37, 7936.
[13] Bachtler, M.; Lorenz, W. J.; Schindler, W.; Saemann-lschenko, G. Mod. Phys. Let. B 1988, 2, 819.
[14] Gorelov, B. M.; Dyakin, V. V.; Kashin, G. N.; Makhnjuk, V. I.; Morozovskaya, D. V.; Sidorchuk, V. A. J. Electron. Spectrosc. Relat. Phenom. 1994, 70, 161.
[15] Gorelov, B. M.; Morozovskaya, D. V.; Pashkov, V. M.; Sidorchuk, V. A. Technical Physics 2000, 45, 1147.
[16] Makarshin, L. L.; Andreev, D. V.; Parmon, V. N. Chem. Phys. Lett. 1997, 266, 173.
[17] Makarshin, L. L.; Andreev, D. V.; Parmon, V. N. Physica C 1997, 282-287, 1609.
[18] Gordon, R. D.; Cussler, E. L. Langmuir 1999, 15, 3950.
[19] Xu, F.; Chen, K.-M.; Piner, R. D.; Mirkin, C. A. Langmuir 1998, 14, 6505.
[20] Makarshin, L. L.; Andreev, D. V.; Golikova, N. A.; Parmon, V. N. In Proceedings of the 23rd International Conference on Low Temperature Physics, Eds.: Iye, I.; Maekawa, S., Elsevier Science, Noth Holland, 2003.
[21] Shvart, D.; Hazani, M.; Shapiro, B. Y.; Leitus, G. Sidorov, V.; Naaman, R. Europhys. Lett. 2005, 72, 645.
[22] Fogel, N. Y.; Buchstab, E. I.; Bomze, Y. V.; Yuzephovich, O. I.; Sipatov, A. Y.; Pashitskii, E. A.; Danilov, A.; Langer, V.; Shekhter, R. I.; Jonson, M. Phys. Rev. B 2002, 66, 174513.
[23] Ohtomo, A.; Hwang, H. Y. Nature 2004, 427, 423.
[24] Reyren, N.; Thiel, S.; Caviglia, A. D.; Fitting Kourkoutis, L.; Ham-merl, G.; Richter, C.; Schneider, C. W.; Kopp, T.; Rüetschi, A. S.; Jaccard, D.; Gabay, M.; Muller, D. A.; Triscone, J. M.; Mannhart, J. Science 2007, 317, 1196.
[25] Caviglia, A. D.; Gariglio, S.; Reyren, N.; Jaccard, D.; Schneider, T.; Gabay, M.; Thiel, S.; Hammerl, G.; Mannhart, J.; Triscone, J. M. Nature 2008, 456, 624.
[26] Bozovic, I.; Logvenov, G.; Belca, I.; Narimbetov, B.; Sveklo, I. Phys. Rev. Lett. 2002, 89, 107001.
[27] Gozar, A.; Logvenov, G.; Fitting Kourkoutis, L.; Bollinger, A. T.; Giannuzzi, L. A.; Muller, D. A.; Bozovic, I. Nature 2008, 455, 782.
[28] Smadici, S.; Lee, J. C. T.; Wang, S.; Abbamonte, P.; Logvenov, G.; Gozar, A.; Deville Cavellin, C.; Bozovic, I. Phys. Rev. Lett. 2009, 102, 107004.
[29] Zhang, T.; Cheng, P.; Li, W.-J.; Sun, Y.-J.; Wang, G.; Zhu, X.-G.; He, K.; Wang, L.-L.; Ma, X.-C.; Chen, X.; Wang, Y.-Y.; Liu, Y.; Lin, H.-Q.; Jia, J.-F.; Xue, Q.-K. Nat. Phys. 2010, 6, 104.
[30] Uchihashi, T.; Mishra, T.; Aono, M.; Nakayama, T. Phys. Rev. Lett. 2011, 107, 207001.
[31] Yamada, M.; Hirahara, T.; Hasegawa, S. Phys. Rev. Lett. 2013, 110, 237001.
[32] Noffsinger, J.; Cohen, M. L. Solid State Commun. 2011, 151, 421.
[33] Song, C.-L.; Wang, Y.-L.; Chen, P.; Jiang, Y.-P.; Li, W.; Zhang, T.; Li, Z.; He, K.; Wang, L.-L.; Jia, J.-F.; Huang, H. H.; Wu, C. J.; Ma, X.-C.; Chen, X.; Xue, Q.-K. Science 2011, 332, 1410.
[34] Wang, Q.-Y.; Li, Z.; Zhang, W.-H.; Zhang, Z.-C.; Zhang, J.-S.; Li, W.; Ding, H.; Ou, Y.-B.; Deng, P.; Chang, K.; Wen, J.; Song, C.-L.; He, K.; Jia, J.-F.; Ji, S.-H.; Wang, Y.-Y.; Wang, L.-L.; Chen, X.; Ma, X.-C.; Xue, Q.-K. Chin. Phys. Lett. 2012, 29, 037402.
[35] Zhang, W.-H.; Li, Z.; Li, F.-S.; Zhang, H.-M.; Peng, J.-P.; Tang, C.-J.; Wang, Q.-Y.; He, K.; Chen, X.; Wang, L.-L.; Ma, X.-C.; Xue, Q.-K. Phys. Rev. B 2014, 89, 060506.
[36] Li, Z.; Peng, J.-P.; Zhang, H.-M.; Zhang, W.-H.; Ding, H.; Deng, P.; Chang, K.; Song, C.-L.; Ji, S.-H.; Wang, L.-L.; He, K.; Chen, X.; Xue, Q.-K.; Ma, X.-C. J. Phys.: Condens. Matter 2014, 26, 265002.
[37] Liu, D.; Zhang, W. H.; Mou, D.; He, J. F., Ou, Y. B.; Wang, Q. Y.; Li, Z.; Wang, L. L.; Zhao, L.; He, S. L.; Peng, Yingying; Liu, X.; Chen, C. Y.; Yu, L.; Liu, G. D.; Dong, X. L.; Zhang, J.; Chen, C. T.; Xu, Z. Y.; Hu, J. P.; Chen, X.; Ma, X.-C.; Xue, Q.-K.; Zhou, X. J. Nature Commun. 2012, 3, 931.
[38] He, S.-L.; He, J.-F.; Zhang, W.-H.; Zhao, L.; Liu, D.-F.; Liu, X.; Mou, D.-X.; Ou, Y.-B.; Wang, Q.-Y.; Li, Z.; Wang, L.-L.; Peng, Y.-Y.; Liu, Y.; Chen, C.-Y.; Yu, L.; Liu, G.-D.; Dong, X.-L.; Zhang, J.; Chen, C.-T.; Xu, Z.-Y.; Chen, X.; Ma, X.-C.; Xue, Q.-K.; Zhou, X.-J. Nature Mater. 2013, 12, 605
[39] Bang, J.; Li, Z.; Sun, Y. Y.; Samanta, A.; Zhang, Y. Y.; Zhang, W. H.; Wang, L. L.; Chen, X.; Ma, X.-C.; Xue, Q. K.; Zhang, S. B. Phys. Rev. B 2013, 87, 220503.
[40] Tan, S.-Y.; Zhang, Y.; Xia, M.; Ye, Z.-R.; Chen, F.; Xie, X.; Peng, R.; Xu, D.-F.; Fan, Q.; Xu, H.-C.; Jiang, J.; Zhang, T.; Lai, X.-C.; Xiang, T.; Hu, J.-P.; Xie, B.-P.; Feng, D.-L. Nature Mater. 2013, 12, 634.
[41] Liu, X.; Liu, D.-F.; Zhang, W.-H.; He, J.-F.; Zhao, L.; He, S.-L.; Mou, D.-X.; Li, F.-S.; Tang, C.-J.; Li, Z.; Wang, L.-L.; Peng, Y.-Y.; Liu, Y.; Chen, C.-Y.; Yu, L.; Liu, G.-D.; Dong, X.-L.; Zhang, J.; Chen, C.-T.; Xu, Z.-Y.; Chen, X.; Ma, X.-C.; Xue, Q.-K.; Zhou, X.-J. Nature Commun. 2014, 5, 5047.
[42] Lee. J. J.; Schmitt, F. T.; Moore, R. G.; Johnston, S.; Cui, Y.-T.; Li, W.; Yi, W.; Liu, Z. K.; Hashimoto, M.; Zhang, Y.; Lu, D. H.; Devereaux, T. P.; Lee, D.-H.; Shen, Z.-X. Nature 2014, 515, 245.
[43] Deng, L. Z.; Lv, B.; Wu, Z.; Xue, Y. Y.; Zhang, W. H.; Li, F. S.; Wang, L. L.; Ma, X.-C.; Xue, Q.-K.; Chu, C. W. Phys. Rev. B 2014, 90, 214513.
[44] Sun, Y.; Zhang, W. H.; Xing, Y.; Li, F. S.; Zhao, Y. F.; Xia, Z. C.; Wang, L. L.; Ma, X.-C.; Xue, Q.-K.; Wang, J. Sci. Rep. 2014, 4, 6040.
[45] He, J.-F.; Liu, X.; Zhang, W.-H.; Zhao, L.; Liu, D.-F.; He, S.-L.; Mou, D.-X.; Li, F. S.; Tang, C. J.; Li, Z.; Wang, L. L.; Peng, Y. Y.; Liu, Y.; Chen, C. Y.; Yu, L.; Liu, G. D.; Dong, X. L.; Zhang, J.; Chen, C. T.; Xu, Z. Y.; Chen, X.; Ma, X.-C.; Xue, Q.-K.; Zhou, X. J. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 18501.
[46] Coh, S.; Cohen, M. L.; Louie, S. G. arXiv: 1407. 5657.
[47] Ge, J.-F.; Liu, Z.-L.; Liu, C.-H.; Gao, C.-L; Qian, D.; Xue, Q.-K.; Liu, Y.; Jia, J.-F. Nature Mater. 2014, 14, 285.
[48] Bozovic, I.; Ahn, C. Nature Phys. 2014, 10, 892.

文章导航

/