SO4-和I-共掺杂的聚苯胺对电极在染料敏化太阳电池中的应用
收稿日期: 2015-04-16
网络出版日期: 2015-07-07
基金资助
项目受国家自然科学基金(Nos.21203039,21107069)和科技部国际合作(No.2015DFG62610)资助.
Application of SO4- and I- co-Doped Polyaniline Counter Electrode in Dye-sensitized Solar Cells
Received date: 2015-04-16
Online published: 2015-07-07
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21203039, 21107069), and the Ministry of Science and Technology of China (No. 2015DFG62610).
采用循环伏安法(CV)在掺杂氟的二氧化锡(FTO)导电玻璃上, 成功聚合了SO4-和I-共掺杂的聚苯胺(PANI)对电极. 利用扫描电子显微镜(SEM)、紫外-可见(UV-Vis)吸收光谱、傅里叶红外(FT-IR)吸收光谱、CV和电化学阻抗谱(EIS)等测试方法详细研究了I-作为第二种掺杂离子及LiI掺杂浓度对所制备的PANI对电极的表面形貌, 结构和对I-/氧化还原电对的催化活性的影响. SEM结果显示在聚合电解液中引入LiI改变了所制备的PANI对电极的形貌, 可提供更多的催化反应活性位点, 同时还改善了薄膜的孔隙性. 值得注意的是, 引入I-共掺杂可在一定程度上使3I-↔ +2e-反应在相应的PANI电极上更容易进行. 在反应体系中 LiI浓度为0.02 mol·L-1时得到的PANI对电极, 组装成电池时获得的电池效率最高可达6.52%, 相当于Pt对电极6.95%的93.8%, 比基于只掺杂 的PANI对电极的光电转换效率提高了16%, 说明 和I-共掺杂的PANI对电极可以提高相应染料敏化太阳电池的光电转换性能, 有望在未来成为Pt对电极的替代材料.
韩若冰 , 芦姗 , 王艳杰 , 张雪华 , 吴强 , 贺涛 . SO4-和I-共掺杂的聚苯胺对电极在染料敏化太阳电池中的应用[J]. 化学学报, 2015 , 73(10) : 1061 -1068 . DOI: 10.6023/A15040264
SO4- and I- co-doped polyaniline (PANI) on fluorine-doped tin oxide (FTO) conductive glass substrates were fabricated via electropolymerization with different LiI concentration and used as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The polymerization was performed via cyclic voltammetry (CV) method (0~1.0 V, vs saturated calomel electrode, SCE) at room temperature in aqueous solution, containing 0.35 mol·L-1 aniline monomer, 0.25 mol·L-1 H2SO4 and different concentrations of LiI (0, 0.01, 0.02 and 0.03 mol·L-1). A Pt plate was used as the counter electrode and SCE was used as the reference electrode. The influences of I- doping and the concentration of LiI on surface morphology, structure, and electrocatalytic activity for I-/redox reaction of the obtained PANI CEs were thoroughly studied by scanning electron microscopy (SEM), UV-Vis absorption spectroscopy, fourier transform infrared spectroscopy (FT-IR), CV, and electrochemical impedance spectroscopy (EIS). SEM images indicated that the introduction of LiI into the polymerization solution could change the morphology of the obtained PANI CEs, which could provide more electrocatalytic sites for I-/redox reaction. Meanwhile, the porosity of the as-prepared PANI films was also improved. It is worth noted that I- co-doping could make it easier for 3I- ↔ +2e- reaction on PANI electrodes. The sandwich-type DSSCs were comprised of a N719-sensitized TiO2 working electrode, an as-prepared PANI or Pt electrode as CE, and a redox mediator solution containing 0.1 mol·L-1 LiI, 0.05 mol·L-1 I2, 0.6 mol·L-1 1,2-dimethyl-3-propylimidazolium iodide, and 0.5 mol·L-1 4-tert-butylpyridine in acetonitrile. DSSC based on the PANI CE polymerized with 20 mmol·L-1 LiI showed the best photovoltaic performance, with a solar-to-energy conversion efficiency of 6.52%, which is 93.8% of the efficiency of Pt-DSSC (6.95%) and 116% of that based on PANI CE doped only with SO4-. The results suggest that SO4- and I- co-doped PANI CEs can improve the photovoltaic performance of the resultant DSSCs, and may replace Pt CEs in DSSCs in the future.
[1] Oregan, B.; Grätzel, M. Nature 1991, 353, 737.
[2] (a) Kou, D. X.; Liu, W. Q.; Hu, L. H.; Chen, S. H.; Huang, Y.; Dai, S. Y. Acta Chim. Sinica 2013, 71, 777. (寇东星, 刘伟庆, 胡林华, 陈双宏, 黄阳, 戴松元, 化学学报, 2013, 71, 777.)
(b) Kou, D. X.; Liu, W. Q.; Hu, L. H.; Chen, S. H.; Huang, Y.; Dai, S. Y. Acta Chim. Sinica 2013, 71, 1149. (寇东星, 刘伟庆, 胡林华, 陈双宏, 黄阳, 戴松元, 化学学报, 2013, 71, 1149.)
(c) Xiong, B. T.; Zhu, Z. Y.; Wang, C. R.; Chen, B. X.; Luo, J. Y. Acta Chim. Sinica 2013, 71, 443. (熊必涛, 朱志艳, 王长荣, 陈宝信, 骆钧炎, 化学学报, 2013, 71, 443.)
(d) Tang, X.; Wang, Y. X. Acta Chim. Sinica 2013, 71, 193. (唐笑, 汪禹汛, 化学学报, 2013, 71, 193.)
[3] (a) Zhang, X. Y.; Ying, W. J.; Wu, W. J.; Li, J.; Hua, J. L. Acta Chim. Sin. 2015, 73, 272. (张晓瑜, 应伟江, 武文俊, 李晶, 花建丽, 化学学报, 2015, 73, 272.)
(b) Zhu, L. F.; Shi, J. J.; Li, D. M.; Meng, Q. B. Acta Chim. Sinica 2015, 73, 261. (朱立峰, 石将建, 李冬梅, 孟庆波, 化学学报, 2015, 73, 261.)
[4] (a) Lee, W. J.; Ramasamy, E.; Lee, D. Y.; Song, J. S. ACS Appl. Mater. Interfaces 2009, 1, 1145.
(b) Kavan, L.; Yum, J. H.; Grätzel, M. ACS Nano 2011, 5, 165.
[5] (a) Wu, M.; Lin, X.; Wang, Y.; Wang, L.; Guo, W.; Qu, D.; Peng, X.; Hagfeldt, A.; Grätzel, M.; Ma, T. J. Am. Chem. Soc. 2012, 134, 3419.
(b) Jiang, Q. W.; Li, G. R.; Gao, X. P. Chem. Commun. 2009, 6720.
[6] (a) Chang, S. H.; Lu, M. D.; Tung, Y. L.; Tuan, H. Y. ACS Nano 2013, 7, 9443.
(b) Wang, M.; Anghel, A. M.; Marsan, B.; Ha, N.-L. C.; Pootrakulchote, N.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2009, 131, 15976.
[7] Meng, X.; Wang, Z.; Wang, L.; Pei, M.; Guo, W.; Tang, X. Electron. Mater. Lett. 2013, 9, 605.
[8] Pringle, J. M.; Armel, V.; MacFarlane, D. R. Chem. Commun. 2010, 46, 5367.
[9] (a) Li, Q. H.; Wu, J. H.; Tang, Q. W.; Lan, Z.; Li, P. J.; Lin, J. M.; Fan, L. Q. Electrochem. Commun. 2008, 10, 1299.
(b) Sun, H. C.; Luo, Y. H.; Zhang, Y. D.; Li, D. M.; Yu, Z. X.; Li, K. X.; Meng, Q. B. J. Phys. Chem. C 2010, 114, 11673.
(c) Tai, Q. D.; Chen, B. L.; Guo, F.; Xu, S.; Hu, H.; Sebo, B.; Zhao, X. Z. ACS Nano 2011, 5, 3795.
[10] Qiu, Y.; Lu, S.; Wang, S. S.; Zhang, X. H.; He, S. T.; He, T. J. Power Sources 2014, 253, 300.
[11] Zhang, X. H.; Wang, S. S.; Lu, S.; Su, J.; He, T. J. Power Sources 2014, 246, 491.
[12] Lu, S.; Wang, S.; Han, R.; Feng, T.; Guo, L.; Zhang, X.; Liu, D.; He, T. J. Mater. Chem. A 2014, 2, 12805.
[13] Xia, J. B.; Chen, L.; Yanagida, S. J. Mater. Chem. 2011, 21, 4644.
[14] Xiao, Y. M.; Lin, J. Y.; Wu, J. H.; Tai, S. Y.; Yue, G. T. Electrochim. Acta 2012, 83, 221.
[15] Su, J.; Lu, S.; Wang, S. S.; Zhang, X. H.; Fu, Y. B.; He, T. Acta Phys-Chim. Sin. 2014, 30, 1487. (苏佳, 芦姗, 王莎莎, 张雪华, 付玉斌, 贺涛, 物理化学学报, 2014, 30, 1487.)
[16] Feng, X. M.; Huang, X. W.; Tan, Z.; Zhao, B.; Tan, S. T. Acta Chim. Sinica 2011, 69, 653. (冯小明, 黄先威, 谭卓, 赵斌, 谭松庭, 化学学报, 2011, 69, 653.)
[17] Liu, G.; Li, X.; Wang, H.; Rong, Y.; Ku, Z.; Xu, M.; Liu, L.; Hu, M.; Yang, Y.; Han, H. J. Mater. Chem. A 2013, 1, 1475.
[18] Peng, Y.; Zhong, J.; Wang, K.; Xue, B.; Cheng, Y.-B. Nano Energy 2013, 2, 235.
[19] Yue, G.; Wu, J.; Xiao, Y.; Lin, J.; Huang, M.; Lan, Z. J. Phys. Chem. C 2012, 116, 18057.
[20] Yue, G. T.; Wu, J. H.; Xiao, Y. M.; Lin, J. M.; Huang, M. L. Electrochim. Acta 2012, 67, 113.
[21] Peng, S.; Liang, J.; Mhaisalkar, S. G.; Ramakrishna, S. J. Mater. Chem. 2012, 22, 5308.
[22] Yue, G.; Wu, J.; Xiao, Y.; Lin, J.; Huang, M. Electrochim. Acta 2012, 67, 113.
[23] Macdiarmid, A. G.; Chiang, J. C.; Richter, A. F.; Epstein, A. J. Synth. Met. 1987, 18, 285.
[24] Li, Z. P.; Ye, B. X.; Hu, X. D.; Ma, X. Y.; Zhang, X. P.; Deng, Y. Q. Electrochem. Commun. 2009, 11, 1768.
[25] Wang, S. S.; Lu, S.; Li, X. M.; Zhang, X. H.; He, S. T.; He, T. J. Power Sources 2013, 242, 438.
[26] Wang, S. S.; Lu, S.; Su, J.; Guo, Z. K.; Li, X. M.; Zhang, X. H.; He, S. T.; He, T. Acta Phys-Chim. Sin. 2013, 29, 516. (王莎莎, 芦姗, 苏佳, 郭正凯, 李学敏, 张雪华, 何声太, 贺涛, 物理化学学报, 2013, 29, 516.)
[27] Lu, S.; Zhang, X.; Feng, T.; Han, R.; Liu, D.; He, T. J. Power Sources 2015, 274, 1076.
[28] Minto, C. D. G.; Vaughan, A. S. Polymer 1997, 38, 2683.
[29] Cao, Y.; Smith, P.; Heeger, A. J. Synth. Met. 1989, 32, 263.
[30] Tang, J. S.; Jing, X. B.; Wang, B. C.; Wang, F. S. Synth. Met. 1988, 24, 231.
[31] Biallozor, S.; Kupniewska, A. Electrochem. Commun. 2000, 2, 480.
[32] Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S. J. Photochem. Photobiol. A: Chem. 2004, 164, 153.
[33] Wu, M. X.; Lin, X.; Wang, T. H.; Qiu, J. S.; Ma, T. L. Energy Environ. Sci. 2011, 4, 2308.
/
〈 |
|
〉 |