热解聚苯胺/碳纳米笼复合物制备氮掺杂碳材料及其氧还原性能研究
收稿日期: 2015-05-24
网络出版日期: 2015-07-07
基金资助
项目受国家自然科学基金(Nos. 51232003, 21173115, 21203092, 21473089)和“973”项目(No. 2013CB932902)资助.
Oxygen Reduction Performance of the Nitrogen-Doped Carbon Materials Pyrolyzed from Polyaniline/Carbon Nanocage Composites
Received date: 2015-05-24
Online published: 2015-07-07
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 51232003, 21173115, 21203092, 21473089) and “973” program (No. 2013CB932902).
将含氮聚合物聚苯胺(PANI)均匀地担载到具有大比表面积、多级孔结构和高导电性的3D碳纳米笼(CNC)表面, 再热解PANI制得了N掺杂位富集于表面、且具有优良导电性的碳基纳米材料. 通过改变热解温度和前驱物中PANI的含量, 对热解产物的表面N含量和导电性进行了调控. 优化得到的NCNC-2-900催化剂具有优异的氧还原反应(ORR)催化性能, 其起始电位高(-46 mV vs Ag/AgCl), 明显优于体相N掺杂的CNC (-105 mV), 且稳定性好(运行10 h后仍保留96%活性). 该结果表明在保持良好导电性的同时增加表面N掺杂位是提高碳基材料ORR活性的有效途径.
许智慧 , 沈丽明 , 吴强 , 孙涛 , 徐宇洋 , 黎聃勤 , 杜玲玉 , 杨立军 , 王喜章 , 胡征 . 热解聚苯胺/碳纳米笼复合物制备氮掺杂碳材料及其氧还原性能研究[J]. 化学学报, 2015 , 73(8) : 793 -798 . DOI: 10.6023/A15050354
Fuel cells can efficiently convert chemical energy of fuels into electrical energy in a green manner, representing one of the most promising movable power sources. The main bottleneck for the wide application of fuel cells is the sluggish oxygen reduction reaction (ORR) which is usually catalyzed by expensive and unstable Pt catalysts. Hence, the exploration of cost-efficient and long-life ORR electrocatalysts is of great significance. Recently carbon-based metal-free ORR electrocatalysts have attracted much interest due to their superior activity and stability as well as the abundance and low cost. It is generally accepted that nitrogen doping of carbon materials boost the ORR activity by breaking the electroneutrality of carbon layer and activating π electrons. Considering that the embedded N doping sites are useless for ORR but significantly affect electron conduction, the carbon materials with N-enriched surface of high activity and pristine carbon bulk of high conductivity should present better ORR performance than the bulk N-doped counterpart. In this contribution, we report an efficient strategy for the synthesis of ORR electrocatalysts with surface enriched N doping and high conductive bulk by dispersing polyaniline (PANI) on the surface of 3D hierarchical carbon nanocages (CNC), followed by heat treatment in Ar. The N content and conductivity of the pyrolyzed products are regulated by changing the pyrolysis temperature and the weight ratio of PANI/CNC composite. The optimized electrocatalyst with the N content of 2.21 at% and the conductivity of 203 S·m-1 exhibits excellent ORR catalytic performance with high onset potential of -46 mV vs Ag/AgCl, obvious superior to the bulk N-doped CNC (-105 mV). This catalyst also possesses high stability (96% activity retention after 10 h continuous tests) and dominated 2-electron pathway for ORR with transferred electron number of 2.8. This result suggests an efficient route to improve the ORR activity of carbon-based materials by increasing the N content enriched at the surface while keeping their high conductivity.
[1] Chu, S.; Majumdar, A. Nature 2012, 488, 294.
[2] Wang, Z. H.; Shi, G. Y.; Xia, J. F.; Zhang, F. F.; Xia, Y. Z.; Li, Y. H.; Xia, L. H. Acta Chim. Sinica 2013, 71, 1225. (王宗花, 史国玉, 夏建飞, 张菲菲, 夏延致, 李延辉, 夏临华, 化学学报, 2013, 71, 1225.)
[3] Gasteiger, H. A.; Markovic, N. M. Science 2009, 324, 48.
[4] Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Science 2009, 323, 760.
[5] Jiang, S. J.; Ma, Y. W.; Jian, G. Q.; Tao, H. S.; Wang, X. Z.; Fan, Y. N.; Lu, Y. N.; Hu, Z.; Chen, Y. Adv. Mater. 2009, 21, 4953.
[6] Wu, J. B.; Yang, H. Acc. Chem. Res. 2013, 46, 1848.
[7] Zhang, S.; Zhang, S.; Jiang, S. M.; Zhu, H. Y.; Guo, S. J.; Su, D.; Lu, G.; Sun, S. H. J. Am. Chem. Soc. 2014, 136, 7734.
[8] Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. Energy Environ. Sci. 2011, 4, 3167.
[9] Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. J. Am. Chem. Soc. 2013, 135, 2013.
[10] Sun, T.; Wu, Q.; Che, R. C.; Bu, Y. F.; Jiang, Y. F.; Li, Y.; Yang, L. J.; Wang, X. Z.; Hu, Z. ACS Catal. 2015, 5, 1857.
[11] Qu, L.-T.; Liu, Y.; Baek, J. B.; Dai, L.-M. ACS Nano 2010, 4, 1321.
[12] Liu, R.-L.; Wu, D.-P.; Feng, X.-L.; Müllen, K. Angew. Chem., Int. Ed. 2010, 49, 1.
[13] Chen, S.; Bi, J. Y.; Zhao, Y.; Yang, L. J.; Zhang, C.; Ma, Y. W.; Wu, Q.; Wang, X. Z.; Hu, Z. Adv. Mater. 2012, 24, 5593.
[14] Yang, L. J.; Jiang, S. J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X. Z.; Wu, Q.; Ma, J.; Ma, Y. W.; Hu, Z. Angew. Chem., Int. Ed. 2011, 50, 7132.
[15] Zhao, Y.; Yang, L. J.; Chen, S.; Wang, X. Z.; Ma, Y. W.; Wu, Q.; Jiang, Y. F.; Qian, W. J.; Hu, Z. J. Am. Chem. Soc. 2013, 135, 1201.
[16] Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S.-Z. Angew. Chem., Int. Ed. 2012, 51, 11496.
[17] Yang, Z.; Yao, Z.; Li, G.-F.; Fang, G.-Y.; Nie, H.-G.; Liu, Z.; Zhou, X.-M.; Chen, X.; Huang, S.-M. ACS Nano 2012, 6, 205.
[18] Liu, Z. W.; Peng, F.; Wang, H. J.; Yu, H.; Zheng, W. X.; Yang, J. Angew. Chem., Int. Ed. 2011, 50, 3257.
[19] Wang, L. W.; Feng, R.; Xia, J. Z.; Chen, S.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2014, 72, 1070. (王立伟, 冯瑞, 夏婧竹, 陈盛, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2014, 72, 1070.)
[20] Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Chem. Rev. 2015, 115, 4823.
[21] Tian, G. L.; Zhang, Q.; Zhang, B. S.; Jin, Y. G.; Huang, J. Q.; Su, D. S.; Wei, F. Adv. Funct. Mater. 2014, 24, 5956.
[22] Wang, X. Q.; Lee, J. S.; Zhu, Q.; Liu, J.; Wang, Y.; Dai, S. Chem. Mater. 2010, 22, 2178.
[23] Chen, L.; Du, R.; Zhu, J. H.; Mao, Y. Y.; Xue, C.; Zhang, N.; Hou, Y. L.; Zhang, J.; Yi, T. Small 2015, 11, 1423.
[24] Yazdi, A. Z.; Fei, H. L.; Ye, R. Q.; Wang, G.; Tour, J.; Sundararaj, U. ACS Appl. Mater. Interfaces 2015, 7, 7786.
[25] Zhang, L. J.; Su, Z. X.; Jiang, F. L.; Yang, L. L.; Qian, J. J.; Zhou, Y. F.; Li, W. M.; Hong, M. C. Nanoscale 2014, 6, 6590.
[26] Xie, K.; Qin, X. T.; Wang, X. Z.; Wang, Y. N.; Tao, H. S.; Wu, Q.; Yang, L. J.; Hu, Z. Adv. Mater. 2012, 24, 347.
[27] Lyu, Z. Y.; Xu, D.; Yang, L. J.; Che, R. C.; Feng, R.; Zhao, J.; Li, Y.; Wu, Q.; Wang, X. Z.; Hu, Z. Nano Energy 2015, 12, 657.
[28] Liang, Y.-Y.; Wang, H.-L.; Zhou, J.-G.; Li, Y.-G.; Wang, J.; Regier, T.; Dai, H.-J. J. Am. Chem. Soc. 2012, 134, 3517.
/
〈 |
|
〉 |