综述

磺化杯芳烃的超分子组装体构筑及其功能

  • 王以轩 ,
  • 刘育
展开
  • a 南开大学化学系元素有机化学国家重点实验室 天津 300071;
    b 天津化学化工协同创新中心 天津 300071

收稿日期: 2015-06-05

  网络出版日期: 2015-07-17

基金资助

项目受973重大科学研究计划(No.2011CB932502)和国家自然科学基金(Nos.91227107,21432004)资助.

Supramolecular Assemblies Based on p-Sulfonatocalixarenes and Their Functions

  • Wang Yixuan ,
  • Liu Yu
Expand
  • a Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Tianjin 300071;
    b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071

Received date: 2015-06-05

  Online published: 2015-07-17

Supported by

Project supported by “973” Program (No. 2011CB932502) and the National Natural Science Foundation of China (Nos. 91227107 and 21432004).

摘要

磺化杯芳烃具有非常强的分子键合能力, 被广泛用于水相超分子自组装研究. 介绍了磺化杯芳烃与客体阳离子形成超分子组装体的主要驱动力和形貌调控因素; 总结了包括主体诱导客体聚集、客体诱导主体聚集及主客体共组装在内的三种主要聚集模式; 并展望了其在刺激响应材料、药物传递载体、多功能超分子平台和超分子催化等领域的重要应用前景.

本文引用格式

王以轩 , 刘育 . 磺化杯芳烃的超分子组装体构筑及其功能[J]. 化学学报, 2015 , 73(10) : 984 -991 . DOI: 10.6023/A15060393

Abstract

Benefiting from the excellent host-guest binding capacity, p-sulfonatocalixarenes are widely used in the fabrication of versatile supramolecular assemblies in aqueous media. This review introduces the driving forces for supramolecular assembly based on the complexation of p-sulfonatocalixarenes with cationic guests and the key factors for morphology control; three usual models for supramolecular assembly involving calixarene-induced guest assembly, guest-induced calixarene assembly and calixarene-guest coassembly; and the applications in stimuli-responsive materials, drug delivery, multifunctional nanoplatform, and supramolecular catalysis.

参考文献

[1] Wang, Z.; Guo, D.-S.; Zhang, J.; Liu, Y. Acta Chim. Sinica 2012, 70, 1709. (王振, 郭东升, 张捷, 刘育, 化学学报, 2012, 70, 1709).

[2] Zhao, B.; Zhu, W. Chin. J. Org. Chem. 2014, 34, 1992. (赵邦屯, 朱卫民, 有机化学, 2014, 34, 1992.)

[3] von Baeyer, A. Ber. Dtsch. Chem. Ges. 1872, 5, 25.

[4] Zinke, A.; Ziegler, E.; Martinowitz, E.; Pichelmayer, H.; Tomio, M.; Wittmann-Zinke, H.; Zwanziger, S. Chem. Ber. 1944, 77B, 264.

[5] Gutsche, C. D. Calixarenes, The Royal Society of Chemistry, Cambridge, England, 1989.

[6] Peczuh, M. W.; Hamilton, A. D. Chem. Rev. 2000, 100, 2479.

[7] Xue, M.; Hu, S.; Chen, C. Acta Chim. Sinica 2012, 70, 1697. (薛敏, 胡树振, 陈传峰, 化学学报, 2012, 70, 1697.)

[8] Zhai, S.-S.; Chen, Y.; Liu, Y. Chin. Chem. Lett. 2013, 24, 442.

[9] Wang, H.; Zhang, Z.-J.; Zhang, H.-Y.; Liu, Y. Chin. Chem. Lett. 2013, 24, 563.
[10] Wang, L.-H.; Zhang, Z.-J.; Zhang, H.-Y.; Wu, H.-L.; Liu, Y. Chin. Chem. Lett. 2013, 24, 949.
[11] Arduini, A.; Pochini, A.; Reverberi, S.; Ungaro, R. J. Chem. Soc., Chem. Commun. 1984, 981.
[12] Shinkai, S.; Mori, S.; Tsubaki, T.; Sone, T.; Manabe, O. Tetrahedron Lett. 1984, 25, 5315.
[13] Guo, D.-S.; Wang, K.; Liu, Y. J. Inclusion Phenom. Macrocycl. Chem. 2008, 62, 1.
[14] Zhou, Y.; Li, H.; Yang, Y.-W. Chin. Chem. Lett. 2015, 26, 825.
[15] Kellermann, M.; Bauer, W.; Hirsch, A.; Schade, B.; Ludwig, K.; Böttcher, C. Angew. Chem., Int. Ed. 2004, 43, 2959.
[16] Guo, D.-S.; Chen, K.; Zhang, H.-Q.; Liu, Y. Chem. Asian J. 2009, 4, 436.
[17] Yao, J.; Yan, Z.; Ji, J.; Wu, W.; Yang, C.; Nishijima, M.; Fukuhara, G.; Mori, T.; Inoue, Y. J. Am. Chem. Soc. 2014, 136, 6916.
[18] Zhang, D.-W.; Zhao, X.; Li, Z.-T. Acc. Chem. Res. 2014, 47, 1961.
[19] Guo, D.-S.; Liu, Y. Acc. Chem. Res. 2014, 47, 1925.
[20] Guo, D.-S.; Jiang, B.-P.; Wang, X.; Liu, Y. Org. Biomol. Chem. 2012, 10, 720.
[21] Cao, Y.; Li, Y.; Hu, X.-Y.; Zou, X.; Xiong, S.; Lin, C.; Wang, L. Chem. Mater. 2015, 27, 1110.
[22] Wang, K.; Guo, D.-S.; Liu, Y. Chem. Eur. J. 2010, 16, 8006.
[23] Wang, K.; Guo, D.-S.; Liu, Y. Chem. Eur. J. 2012, 18, 8758.
[24] Wang, K.; Guo, D.-S.; Wang, X.; Liu, Y. ACS Nano 2011, 5, 2880.
[25] Guo, D.-S.; Wang, K.; Wang, Y.-X.; Liu, Y. J. Am. Chem. Soc. 2012, 134, 10244.
[26] Wang, P.; Yan, X.; Huang, F. Chem. Commun. 2014, 50, 5017.
[27] Luo, J.; Xie, Z.; Lam, J.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740.
[28] Jiang, B.-P.; Guo, D.-S.; Liu, Y.-C.; Wang, K.-P.; Liu, Y. ACS Nano 2014, 8, 1609.
[29] Liu, K.; Liu, Y.; Yao, Y.; Yuan, H.; Wang, S.; Wang, Z.; Zhang, X. Angew. Chem., Int. Ed. 2013, 52, 8285.
[30] Wang, Y.-X.; Zhang, Y.-M.; Liu, Y. J. Am. Chem. Soc. 2015, 137, 4543.
[31] Ji, X.; Li, J.; Chen, J.; Chi, X.; Zhu, K.; Yan, X.; Zhang, M.; Huang, F. Macromolecules 2012, 45, 6457.
[32] Voskuhl, J.; Ravoo, B. J. Chem. Soc. Rev. 2009, 38, 495.
[33] Yu, G.; Ma, Y.; Han, C.; Yao, Y.; Tang, G.; Mao, Z.; Gao, C.; Huang, F. J. Am. Chem. Soc. 2013, 135, 10310.
[34] Shinkai, S.; Mori, S.; Koreishi, H.; Tsubaki, T.; Manabe, O. J. Am. Chem. Soc. 1986, 108, 2409.
[35] Wang, Y.-X.; Guo, D.-S.; Cao, Y.; Liu, Y. RSC Adv. 2013, 3, 8058.
[36] Basílio, N.; Garcia-Rio, L.; Martín-Pastor, M. Langmuir 2012, 28, 2404.
[37] Hu, X.-Y.; Chen, Y.; Liu, Y. Chin. Chem. Lett. 2015, 26, 862.
[38] Wang, K.; Guo, D.-S.; Zhao, M.-Y.; Liu, Y. Chem. Eur. J. 2014, 20, 1.
[39] Peng, S.; Wang, K.; Guo, D.-S.; Liu, Y. Soft Matter 2015, 11, 290.
[40] Cui, J.; Uzunova, V. D.; Guo, D.-S.; Wang, K.; Nau, W. M.; Liu, Y. Eur. J. Org. Chem. 2010, 1704.
[41] Qin, Z.; Guo, D.-S.; Gao, X.-N.; Liu, Y. Soft Matter 2014, 10, 2253.
[42] Wang, Y.-X.; Guo, D.-S.; Duan, Y.-C.; Wang, Y.-J.; Liu, Y. Sci. Rep. 2015, 5, 9019.
[43] Rösler, A.; Vandermeulen, G. W. M.; Klok, H.-A. Adv. Drug Delivery Rev. 2001, 53, 95.
[44] Gu, F.; Zhang, L.; Teply, B. A.; Mann, N.; Wang, A.; Radovic-Moreno, A. F.; Langer, R.; Farokhzad, O. C. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 2586.
[45] Wang, Y.-X.; Zhang, Y.-M.; Liu, Y. Chem. Mater. 2015, 27, 2848.

文章导航

/