有机或金属-有机二维纳米材料的制备与应用
收稿日期: 2015-03-31
网络出版日期: 2015-05-21
基金资助
项目受新加坡教育部基金(ARC 26/13 No. MOE2013-T2-1-034; ARC 19/15, No. MOE2014-T2-2-093; RGT18/13; RG5/13), 新加坡南洋理工大学启动基金(M4081296.070.500000), 南洋理工大学食品安全科研基金(M4081458.070.500000), 新加坡千禧基金, 由新加坡环境与水工业专项办公室(EWI)管理的环境和水技术国家战略研究计划基金, 以及由新加坡总理办公室管理的能源水处理项目(CREATE)基金的支持. 同时, 项目受中国国家自然科学基金(GZ213054; 51322202)以及江苏省自然科学基金(BK20130927)资助.
Preparation and Applications of Two-Dimensional Crystals Based on Organic or Metal-Organic Materials
Received date: 2015-03-31
Online published: 2015-05-21
Supported by
This work was supported by MOE under AcRF Tier 2 (ARC 26/13, No. MOE2013-T2-1-034; ARC 19/15, No. MOE2014-T2-2-093) and AcRF Tier 1 (RGT18/13, RG5/13), NTU under Start-Up Grant (M4081296.070.500000) and iFood Research Grant (M4081458.070.500000), Singapore Millennium Foundation in Singapore, and the National Natural Science Foundation of China (GZ213054, 51322202) in China, and the Natural Science Foundation of Jiangsu Province (BK20130927). This research grant is supported by the Singapore National Research Foundation under its Environmental & Water Technologies Strategic Research Programme and administered by the Environment & Water Industry Programme Office (EWI) of the PUB. This Research is also conducted by NTU-HUJ-BGU Nanomaterials for Energy and Water Management Programme under the Campus for Research Excellence and Technological Enterprise (CREATE), that is supported by the National Research Foundation, Prime Minister's Office, Singapore.
李绍周 , 黄晓 , 张华 . 有机或金属-有机二维纳米材料的制备与应用[J]. 化学学报, 2015 , 73(9) : 913 -923 . DOI: 10.6023/A15030221
Besides graphene and transitional metal dichalcogenide nanosheets which have aroused tremendous research interest over the last decade, recently, two-dimensional (2D) organic or metal-organic nanosheets have also attracted increasing research interest. These ultrathin nanomaterials possess the long range structural order, the tunable surface properties, and/or controllable porosity, making them promising in a wide range of applications, such as electronics, optoelectronics, catalysis, molecular separation and so on. This review article aims to provide a brief overview on free-standing 2D nanosheets of organic or metal-organic materials that have been reported so far, especially focusing on their synthetic methods and possible applications.
[1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
[2] Huang, X.; Tan, C.; Yin, Z.; Zhang, H. Adv. Mater. 2014, 26, 2185.
[3] Xu, M.; Liang, T.; Shi, M.; Chen, H. Chem. Rev. 2013, 113, 3766.
[4] Tan, C.; Zhang, H. Chem. Soc. Rev. 2015, 44, 2713.
[5] Sasaki, T.; Watanabe, M.; Hashizume, H.; Yamada, H.; Nakazawa, H. J. Am. Chem. Soc. 1996, 118, 8329.
[6] Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011, 331, 568.
[7] Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.; Zhang, H. Angew. Chem. Int. Ed. 2011, 50, 11093.
[8] Ma, R.; Liu, Z.; Takada, K.; Iyi, N.; Bando, Y.; Sasaki, T. J. Am. Chem. Soc. 2007, 129, 5257.
[9] Wang, H.; Yu, L.; Lee, Y.-H.; Shi, Y.; Hsu, A.; Chin, M. L.; Li, L.-J.; Dubey, M.; Kong, J.; Palacios, T. Nano Lett. 2012, 12, 4674.
[10] Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Nat. Nanotechnol. 2013, 8, 826.
[11] Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.; Yan, Y. J. Am. Chem. Soc. 2014, 136, 7077.
[12] Sakamoto, J.; van Heijst, J.; Lukin, O.; Schlueter, A. D. Angew. Chem. Int. Ed. 2009, 48, 1030.
[13] Ulman, A. Chem. Rev. 1996, 96, 1533.
[14] Govindaraju, T.; Avinash, M. B. Nanoscale 2012, 4, 6102.
[15] Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Nat. Mater. 2010, 9, 565.
[16] Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Science 2011, 332, 228.
[17] Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.-H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Nishihara, H. J. Am. Chem. Soc. 2013, 135, 2462.
[18] Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103.
[19] James, S. L. Chem. Soc. Rev. 2003, 32, 276.
[20] Gallego, A.; Hermosa, C.; Castillo, O.; Berlanga, I.; Gomez-Garcia, C. J.; Mateo-Marti, E.; Martinez, J. I.; Flores, F.; Gomez-Navarro, C.; Gomez-Herrero, J.; Delgado, S.; Zamora, F. Adv. Mater. 2013, 25, 2141.
[21] Li, P.-Z.; Maeda, Y.; Xu, Q. Chem. Commun. 2011, 47, 8436.
[22] Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Science 2013, 340, 1420.
[23] Nielsen, R. B.; Kongshaug, K. O.; Fjellvag, H. J. Mater. Chem. 2008, 18, 1002.
[24] Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.
[25] Berlanga, I.; Luisa Ruiz-Gonzalez, M.; Maria Gonzalez-Calbet, J.; Fierro, J. L. G.; Mas-Balleste, R.; Zamora, F. Small 2011, 7, 1207.
[26] Berlanga, I.; Mas-Balleste, R.; Zamora, F. Chem. Commun. 2012, 48, 7976.
[27] Bunck, D. N.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 14952.
[28] Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135, 17853.
[29] Kissel, P.; Murray, D. J.; Wulftange, W. J.; Catalano, V. J.; King, B. T. Nat. Chem. 2014, 6, 774.
[30] Kissel, P.; Erni, R.; Schweizer, W. B.; Rossell, M. D.; King, B. T.; Bauer, T.; Goetzinger, S.; Schlueter, A. D.; Sakamoto, J. Nat. Chem. 2012, 4, 287.
[31] Saines, P. J.; Steinmann, M.; Tan, J.-C.; Yeung, H. H. M.; Li, W.; Barton, P. T.; Cheetham, A. K. Inorg. Chem. 2012, 51, 11198.
[32] Saines, P. J.; Tan, J.-C.; Yeung, H. H. M.; Barton, P. T.; Cheetham, A. K. Dalton Trans. 2012, 41, 8585.
[33] Tan, J.-C.; Saines, P. J.; Bithell, E. G.; Cheetham, A. K. ACS Nano 2012, 6, 615.
[34] Nie, W.-X.; Bao, S.-S.; Zeng, D.; Guo, L.-R.; Zheng, L.-M. Chem. Commun. 2014, 50, 10622.
[35] Araki, T.; Kondo, A.; Maeda, K. Chem. Commun. 2013, 49, 552.
[36] Gai, S.; Li, C.; Yang, P.; Lin, J. Chem. Rev. 2014, 114, 2343.
[37] Makiura, R.; Kitagawa, H. Eur. J. Inorg. Chem. 2010, 3715.
[38] Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. J. Am. Chem. Soc. 2011, 133, 5640.
[39] Makiura, R.; Konovalov, O. Sci. Rep. 2013, 3, 2506.
[40] Makiura, R.; Usui, R.; Sakai, Y.; Nomoto, A.; Ogawa, A.; Sakata, O.; Fujiwara, A. Chempluschem 2014, 79, 1352.
[41] Zasadzinski, J. A.; Viswanathan, R.; Madsen, L.; Garnaes, J.; Schwartz, D. K. Science 1994, 263, 1726.
[42] Bauer, T.; Zheng, Z.; Renn, A.; Enning, R.; Stemmer, A.; Sakamoto, J.; Schlueter, A. D. Angew. Chem. Int. Ed. 2011, 50, 7879.
[43] Robertson, E. J.; Oliver, G. K.; Qian, M.; Proulx, C.; Zuckermann,R. N.; Richmond, G. L. Proc. Natl. Acad. Sci. USA 2014, 111, 13284.
[44] Payamyar, P.; Kaja, K.; Ruiz-Vargas, C.; Stemmer, A.; Murray, D. J.; Johnson, C. J.; King, B. T.; Schiffmann, F.; VandeVondele, J.; Renn, A.; Goetzinger, S.; Ceroni, P.; Schuetz, A.; Lee, L.-T.; Zheng, Z.; Sakamoto, J.; Schlueter, A. D. Adv. Mater. 2014, 26, 2052.
[45] Sugiyama, Y.; Okamoto, H.; Mitsuoka, T.; Morikawa, T.; Nakanishi, K.; Ohta, T.; Nakano, H. J. Am. Chem. Soc. 2010, 132, 5946.
[46] Nakano, H. J. Ceram. Soc. JPN 2014, 122, 748.
[47] Eck, W.; Kuller, A.; Grunze, M.; Volkel, B.; Golzhauser, A. Adv. Mater. 2005, 17, 2583.
[48] Junggeburth, S. C.; Diehl, L.; Werner, S.; Duppel, V.; Sigle, W.; Lotsch, B. V. J. Am. Chem. Soc. 2013, 135, 6157.
[49] Nam, K. T.; Shelby, S. A.; Choi, P. H.; Marciel, A. B.; Chen, R.; Tan, L.; Chu, T. K.; Mesch, R. A.; Lee, B.-C.; Connolly, M. D.; Kisielowski, C.; Zuckermann, R. N. Nat. Mater. 2010, 9, 454.
[50] Sanii, B.; Kudirka, R.; Cho, A.; Venkateswaran, N.; Olivier, G. K.; Olson, A. M.; Tran, H.; Harada, R. M.; Tan, L.; Zuckermann, R. N. J. Am. Chem. Soc. 2011, 133, 20808.
[51] Kudirka, R.; Tran, H.; Sanii, B.; Ki Tae, N.; Choi, P. H.; Venkateswaran, N.; Chen, R.; Whitelam, S.; Zuckermann, R. N. Biopolymers 2011, 96, 586.
[52] Hamley, I. W.; Dehsorkhi, A.; Castelletto, V. Chem. Commun. 2013, 49, 1850.
[53] An, Q.; Chen, Q.; Zhu, W.; Li, Y.; Tao, C.-a.; Yang, H.; Li, Z.; Wan, L.; Tian, H.; Li, G. Chem. Commun. 2010, 46, 725.
[54] Baek, K.; Yun, G.; Kim, Y.; Kim, D.; Hota, R.; Hwang, I.; Xu, D.; Ko, Y. H.; Gu, G. H.; Suh, J. H.; Park, C. G.; Sung, B. J.; Kim, K. J. Am. Chem. Soc. 2013, 135, 6523.
[55] Kim, Y.; Kim, H.; Ko, Y. H.; Selvapalam, N.; Rekharsky, M. V.; Inoue, Y.; Kim, K. Chem. Eur. J. 2009, 15, 6143.
[56] Yi, Y.; Fa, S.; Cao, W.; Zeng, L.; Wang, M.; Xu, H.; Zhang, X. Chem. Commun. 2012, 48, 7495.
[57] Xu, J.; Wu, G.; Wang, Z.; Zhang, X. Langmuir 2013, 29, 10959.
[58] Olivier, G. K.; Cho, A.; Sanii, B.; Connolly, M. D.; Tran, H.; Zuckermann, R. N. ACS Nano 2013, 7, 9276.
[59] Qi, X.-L.; Zhang, S.-C. Rev. Mod. Phys. 2011, 83, 1057.
[60] Wang, Z. F.; Liu, Z.; Liu, F. Nat. Commun. 2013, 4, 1471.
[61] Wang, Z. F.; Su, N.; Liu, F. Nano Lett. 2013, 13, 2842.
[62] Kambe, T.; Sakamoto, R.; Kusamoto, T.; Pal, T.; Fukui, N.; Hoshiko, K.; Shimojima, T.; Wang, Z.; Hirahara, T.; Ishizaka, K.; Hasegawa, S.; Liu, F.; Nishihara, H. J. Am. Chem. Soc. 2014, 136, 14357.
[63] Peng, Y.; Li, Y.-S.; Ban, Y.-J.; Jin, H.; Jiao, W.-M.; Liu, Z.-L.; Yang, W.-S. Science 2014, 346, 1356.
[64] Rodenas, T.; Luz, L.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabres, X.; Francesc, X.; Gascon, J. Nat. Mater. 2015
/
〈 |
|
〉 |