Electric-double-layer Transistors Based on Two Dimensional Materials
Received date: 2015-08-18
Online published: 2015-09-15
近年来, 二维材料特别是二维过渡金属硫属化合物材料作为一个新兴研究领域引起了人们极大的兴趣, 它们也被认为是基于石墨烯电子器件的补充材料. 过渡金属硫属化合物之所以能引起人们强烈的兴趣, 在于它们奇特的性质以及其在催化, 能量存贮, 电子, 光电等领域的广泛应用. 自2007年开始, 双电层离子液体晶体管技术被广泛的应用于有机和无机材料包括过渡金属硫属化合物材料以修饰或者调控这类材料的电性质. 基于这种双电层晶体管技术, 材料的迁移率, 操作电压等被进一步改善, 绝缘-金属相变, 超导甚至是铁磁性质也被实现. 本工作将综述双电层离子液体晶体管技术对二维材料的调控性能和简要展望其今后的发展方向.
何学侠 , 刘富才 , 曾庆圣 , 刘政 . 二维材料双电层场晶体管的研究[J]. 化学学报, 2015 , 73(9) : 924 -935 . DOI: 10.6023/A15040280
Over the past years, two-dimensional (2D) nanomaterials especially transition metal dichalcogenides (TMDs) have emerged as promising semiconductor materials to complement graphene-based electronics. They grain lots of attention due to their large number of candidates and varieties of physical properties. In this family, there are a wide range of materials exists ranging from Mott insulator semiconductor, metal, even to superconductor. Some of them, e.g. MoS2, MoSe2, WS2 and WSe2 have been widely investigated in these years, and they show unique properties for artificial van der Waals solids, electronics with ultra-low energy consumption, valleytronics, non-linear optics and high performance catalyst for hydrogen evolution reaction, while many of them still await a thorough theoretical and experimental exploration. Scientists in this field have try their best to modify the properties of this unique family. Charge carrier control is a key issue in the development of electronic functions of semiconductive materials. Beyond the simple enhancement of conductivity, high charge carrier accumulation can realize various phenomena, such as chemical reaction, phase transition, magnetic ordering, and superconductivity. In 2007, Hebard et al. reported the first electric-double-layer transistors (EDLT) using ionic liquid as the gate dielectric, the mobility was increased by 3 cm2·V-1·s-1 than the traditional transistor, this was the first demonstration that EDLT can be used to enhance the performance such as the mobility and the operation voltage of the devices. After that work, many works have been done using EDLT method. Very recently, scientists found that EDLT is also applicable for modifying the electronic properties of both organic and inorganic materials by control the charge carriers in the interface of the EDLT. Based on this method, high transistor performance, insulator-metal transitions, superconductivity, and even ferromagnetism have been released. In this review, we introduce and review the recent work for modifying the electronic properties based on 2D TMD materials.
[1] Sipos, B.; Kusmartseva, A. F.; Akrap, A.; Berger, H.; Forro, L.; Tutis, E. Nat. Mater. 2008, 7, 960.
[2] Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E. ACS Nano 2013, 7, 2898.
[3] Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. Nat. Chem. 2013, 5, 263.
[4] Mas-Balleste, R.; Gomez-Navarro, C.; Gomez-Herrero, J.; Zamora, F. Nanoscale 2011, 3, 20.
[5] Tay, R. Y.; Griep, M. H.; Mallick, G.; Tsang, S. H.; Singh, R. S.; Tumlin, T.; Teo, E. H.; Karna, S. P. Nano Lett. 2014, 14, 839.
[6] Wang, M.; Jang, S. K.; Jang, W.-J.; Kim, M.; Park, S.-Y.; Kim, S.-W.; Kahng, S.-J.; Choi, J.-Y.; Ruoff, R. S.; Song, Y. J.; Lee, S. Adv. Mater. 2013, 25, 2746.
[7] Roy, T.; Tosun, M.; Kang, J. S.; Sachid, A. B.; Desai, S. B.; Hettick, M.; Hu, C. C.; Javey, A. ACS Nano 2014, 8, 6259.
[8] Najmaei, S.; Zou, X.; Er, D.; Li, J.; Jin, Z.; Gao, W.; Zhang, Q.; Park, S.; Ge, L.; Lei, S.; Kono, J.; Shenoy, V. B.; Yakobson, B. I.; George, A.; Ajayan, P. M.; Lou, J. Nano Lett. 2014, 14, 1354.
[9] Perera, M. M.; Lin, M.-W.; Chuang, H.-J.; Chamlagain, B. P.; Wang, C.; Tan, X.; Cheng, M. M.-C.; Tománek, D.; Zhou, Z. ACS Nano 2013, 7, 4449.
[10] Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6, 147.
[11] Ferrari, A. C.; Bonaccorso, F.; Fal'ko, V.; Novoselov, K. S.; Roche, S.; Boggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N.; Garrido, J. A.; Sordan, R.; Bianco, A.; Ballerini, L.; Prato, M.; Lidorikis, E.; Kivioja, J.; Marinelli, C.; Ryhanen, T.; Morpurgo, A.; Coleman, J. N.; Nicolosi, V.; Colombo, L.; Fert, A.; Garcia-Hernandez, M.; Bachtold, A.; Schneider, G. F.; Guinea, F.; Dekker, C.; Barbone, M.; Sun, Z.; Galiotis, C.; Grigorenko, A. N.; Konstantatos, G.; Kis, A.; Katsnelson, M.; Vandersypen, L.; Loiseau, A.; Morandi, V.; Neumaier, D.; Treossi, E.; Pellegrini, V.; Polini, M.; Tredicucci, A.; Williams, G. M.; Hee Hong, B.; Ahn, J.-H.; Min Kim, J.; Zirath, H.; van Wees, B. J.; van der Zant, H.; Occhipinti, L.; Di Matteo, A.; Kinloch, I. A.; Seyller, T.; Quesnel, E.; Feng, X.; Teo, K.; Rupesinghe, N.; Hakonen, P.; Neil, S. R. T.; Tannock, Q.; Lofwander, T.; Kinaret, J. Nanoscale 2015, 7, 4598.
[12] Zou, Z. Y.; Dai, B. Y.; Liu, Z. F. Sci. China 2013, 43, 1. (邹志宇, 戴博雅, 刘忠范, 中国科学, 2013, 43, 1.)
[13] Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Acta Phys.-Chim. Sin. 2010, 26, 2073. (胡耀娟, 金娟, 张卉, 吴萍, 蔡称心, 物理化学学报, 2010, 26, 2073.)
[14] Fu, Q.; Bao, X. H. Chinese Sci. Bull. 2009, 54, 2657. (傅强, 包信合, 科学通报, 2009, 54, 2657.)
[15] Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451.
[16] Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Chem. Mater. 2008, 20, 1661.
[17] Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. ACS Nano 2011, 6, 74.
[18] Kim, H.; Ahn, C.; Arabale, G.; Lee, C.; Kim, T. ECS Trans. 2013, 58, 47.
[19] Amani, M.; Chin, M. L.; Birdwell, A. G.; O'Regan, T. P.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M. Appl. Phys. Lett. 2013, 102, 193107.
[20] Wu, W.; De, D.; Chang, S.-C.; Wang, Y.; Peng, H.; Bao, J.; Pei, S.-S. Appl. Phys. Lett. 2013, 102, 142106.
[21] Taniguchi, K.; Matsumoto, A.; Shimotani, H.; Takagi, H. Appl. Phys. Lett. 2012, 101, 042603.
[22] Ye, J. T.; Zhang, Y. J.; Akashi, R.; Bahramy, M. S.; Arita, R.; Iwasa, Y. Science 2012, 338, 1193.
[23] Yuan, H. T.; Toh, M.; Morimoto, K.; Tan, W.; Wei, F.; Shimotani, H.; Kloc, C.; Iwasa, Y. Appl. Phys. Lett. 2011, 98, 012102.
[24] Ueno, K.; Nakamura, S.; Shimotani, H.; Ohtomo, A.; Kimura, N.; Nojima, T.; Aoki, H.; Iwasa, Y.; Kawasaki, M. Nat. Mater. 2008, 7, 855.
[25] Ueno, K.; Nakamura, S.; Shimotani, H.; Yuan, H. T.; Kimura, N.; Nojima, T.; Aoki, H.; Iwasa, Y.; Kawasaki, M. Nat. Nanotechnol. 2011, 6, 408.
[26] Fujimoto, T.; Awaga, K. Phys. Chem. Chem. Phys. 2013, 15, 8983.
[27] Revolinsky, E.; Lautenschlager, E. P.; Armitage, C. H. Solid State Commun. 1963, 1, 59.
[28] Sanchez, D.; Junod, A.; Muller, J.; Berger, H.; Lévy, F. Physica B Condens. Matter 1995, 204, 167.
[29] Matthias, B. T.; Geballe, T. H.; Compton, V. B. Rev. Mod. Phys. 1963, 35, 1.
[30] Woollam, J. A.; Somoano, R. B. Phys. Rev. B 1976, 13, 3843.
[31] Sipos, B.; Kusmartseva, A. F.; Akrap, A.; Berger, H.; Forro, L.; Tutis, E. Nat. Mater. 2008, 7, 960.
[32] Taniguchi, K.; Matsumoto, A.; Shimotani, H.; Takagi, H. Appl. Phys. Lett. 2012, 101, 042603.
[33] Ye, J. T.; Inoue, S.; Kobayashi, K.; Kasahara, Y.; Yuan, H. T.; Shimotani, H.; Iwasa, Y. Nat. Mater. 2010, 9, 125.
[34] Grahame, D. C. Chem. Rev. 1947, 41, 441.
[35] Parsons, R. Chem. Rev. 1990, 90, 813.
[36] Sparnaay, M. J. Adv. Colloid Interface Sci. 1967, 1, 278.
[37] Helmholtz, H. Annalen der Physik 1853, 165, 211.
[38] Ueno, K.; Nakamura, S.; Shimotani, H.; Nojima, T.; Iwasa, Y.; Kawasaki, M. Proc. SPIE 2011, 26, 7940.
[39] Ye, J. T.; Inoue, S.; Kobayashi, K.; Kasahara, Y.; Yuan, H. T.; Shimotani, H.; Iwasa, Y. Physica C 2010, 470, S682.
[40] Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.-S.; Ho, C.-H.; Yan, J.; Ogletree, D. F.; Aloni, S.; Ji, J.; Li, S.; Li, J.; Peeters, F. M.; Wu, J. Nat. Commun. 2014, 5, 3252.
[41] Ono, S.; Miwa, K.; Seki, S.; Takeya, J. Appl. Phys. Lett. 2009, 94, 063301.
[42] Nakamura, H.; Takagi, H.; Inoue, I. H.; Takahashi, Y.; Hasegawa, T.; Tokura, Y. Appl. Phys. Lett. 2006, 89, 133504.
[43] Nomura, K.; Kamiya, T.; Ohta, H.; Ueda, K.; Hirano, M.; Hosono, H. Appl. Phys. Lett. 2004, 85, 1993.
[44] Larentis, S.; Fallahazad, B.; Tutuc, E. Appl. Phys. Lett. 2012, 101, 223104.
[45] Hebard, A. F.; Fiory, A. T.; Eick, R. IEEE Trans. Magn. 1987, 23, 1279.
[46] Misra, R.; McCarthy, M.; Hebard, A. F. Appl. Phys. Lett. 2007, 90, 052905.
[47] Yuan, H.; Shimotani, H.; Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.; Iwasa, Y. Adv. Funct. Mater. 2009, 19, 1046.
[48] Kang, M. S.; Sahu, A.; Norris, D. J.; Frisbie, C. D. Nano Lett. 2010, 10, 3727.
[49] Pu, J.; Yomogida, Y.; Liu, K.-K.; Li, L.-J.; Iwasa, Y.; Takenobu, T. Nano Lett. 2012, 12, 4013.
[50] Zhang, Y.; Ye, J.; Matsuhashi, Y.; Iwasa, Y. Nano Lett. 2012, 12, 1136.
[51] Kwak, J. Y.; Hwang, J.; Calderon, B.; Alsalman, H.; Munoz, N.; Schutter, B.; Spencer, M. G. Nano Lett. 2014, 14, 4511.
[52] Cho, A. J.; Yang, S.; Park, K.; Namgung, S. D.; Kim, H.; Kwon, J. Y. ECS Solid State Lett. 2014, 3, Q67.
[53] Braga, D.; Gutiérrez Lezama, I.; Berger, H.; Morpurgo, A. F. Nano Lett. 2012, 12, 5218.
[54] Kitazawa, K. Jpn. J. Appl. Phys. 2012, 51, 010001.
[55] Lvovsky, Y.; Jarvis, P. IEEE Trans. Appl. Supercond. 2005, 15, 1317.
[56] Ahn, C. H.; Triscone, J. M.; Mannhart, J. Nature 2003, 424, 1015.
[57] Ono, M.; Koga, S.; Ohtsuki, H. IEEE Instru. Meas. Mag. 2002, 5, 9.
[58] Prassides, K. Nat. Mater. 2010, 9, 96.
[59] Woollam, J. A.; Somoano, R. B. Phys. Rev. B 1976, 13, 3843.
[60] Saito, Y.; Iwasa, Y. ACS Nano 2015, 9, 3192.
[61] Yu, Y.; Yang, F.; Lu, X. F.; Yan, Y. J.; ChoYong, H.; Ma, L.; Niu, X.; Kim, S.; Son, Y.-W.; Feng, D.; Li, S.; Cheong, S.-W.; Chen, X. H.; Zhang, Y. Nat. Nanotechnol. 2015, 10, 270.
[62] Jo, S.; Costanzo, D.; Berger, H.; Morpurgo, A. F. Nano Lett. 2015, 15, 1197.
[63] Pan, X.-C.; Chen, X.; Liu, H.; Feng, Y.; Wei, Z.; Zhou, Y.; Chi, Z.; Pi, L.; Yen, F.; Song, F.; Wan, X.; Yang, Z.; Wang, B.; Wang, G.; Zhang, Y. Nat. Commun. 2015, 6, 7805.
[64] Shi, W.; Ye, J.; Zhang, Y.; Suzuki, R.; Yoshida, M.; Miyazaki, J.; Inoue, N.; Saito, Y.; Iwasa, Y. Sci. Rep. 2015, 5, 12534.
[65] Schilling, A.; Cantoni, M.; Guo, J. D.; Ott, H. R. Nature 1993, 363, 56.
[66] Bednorz, J. G.; Muller, K. A. Physica 1987, 148B, 166.
[67] Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, Y. Q.; Chu, C. W. Phys. Rev. Lett. 1987, 58, 908.
[68] Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. ACS Nano 2014, 8, 1102.
/
〈 |
|
〉 |