研究论文

CaAl类水滑石的磷酸根吸附性能及其影响因素研究

  • 贾云生 ,
  • 王火焰 ,
  • 赵雪松 ,
  • 刘晓伟 ,
  • 王一柳 ,
  • 范群龙 ,
  • 周健民
展开
  • a 中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室 南京 210008;
    b 中国科学院大学 北京 100049;
    c 江苏隆昌化工有限公司 江苏 南通 226500

收稿日期: 2015-07-15

  网络出版日期: 2015-09-15

基金资助

项目受国家973项目(No. 2013CB127401)和国家自然科学基金面上项目(No. 41271309)资助.

Exploring and Evaluation of CaAl Hydrotalcite-like Adsorbents on Phosphate Recycling

  • Jia Yunsheng ,
  • Wang Huoyan ,
  • Zhao Xuesong ,
  • Liu Xiaowei ,
  • Wang Yiliu ,
  • Fan Qunlong ,
  • Zhou Jianmin
Expand
  • a State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008;
    b University of the Chinese Academy of Sciences, Beijing 100049;
    c Jiangsu Longchang Chemical Co., Ltd., Nantong 226500

Received date: 2015-07-15

  Online published: 2015-09-15

Supported by

Project supported by the National Basic Research Program of China (No. 2013CB127401) and the National Natural Science Foundation of China (No. 41271309).

摘要

本研究采用共沉淀法成功制备了CaAl类水滑石(CaAl-LDH), 并运用扫描电子显微镜(SEM)和热重/差示扫描量热分析(TG-DSC)技术对CaAl-LDH的形貌及热稳定性进行了表征. 利用合成含磷溶液及真实含磷污水, 探究了CaAl-LDH对磷酸根的吸附性能及其主要影响因素. 结果表明: 制备的CaAl-LDH具备类水滑石的典型六边形层片状结构以及较好的热稳定性. CaAl-LDH吸附磷酸根的规律符合Langmuir吸附等温方程, 理论最大吸附容量为162.3 mg/g. 吸附动力学过程符合假二级动力学方程. 几种竞争阴离子对吸附的干扰作用由强到弱为 CO32-> SO42-> NO3- . 吸附真实含磷污水中磷酸根时, 10 h左右达最大去除率, 可将污水中磷浓度降低到极低水平. 因此, 制备的CaAl-LDH具有很好的磷酸根吸附性能, 是一种应用前景广阔的污水磷酸根吸附回收利用材料.

本文引用格式

贾云生 , 王火焰 , 赵雪松 , 刘晓伟 , 王一柳 , 范群龙 , 周健民 . CaAl类水滑石的磷酸根吸附性能及其影响因素研究[J]. 化学学报, 2015 , 73(11) : 1207 -1213 . DOI: 10.6023/A15070485

Abstract

We synthesized CaAl-Cl layered double hydroxide (CaAl-LDH) by co-precipitation and evaluated its performance in phosphate adsorption. Calcium fluoride (0.25 mol) and sodium meta-aluminate (0.1 mol) were poured into a beaker that contained 0.2 mol sodium hydroxide. The suspension was aged at 25 ℃ for 4 h under vigorous stirring. The acquired sludge was filtered and washed using distilled water, dried at 60 ℃, and then ground to powder for further study. Phosphate stock solution was prepared using sodium di-hydrogen phosphate, and used for adsorption kinetic and isotherm research. The impact factors (e.g., competitive anions, adsorbent dosage, and adsorption time) of phosphate removal by CaAl-LDH were researched using industrial effluents. Adsorption processes were studied in 50 mL centrifuge tubes, with shaking by a thermostatic oscillator for planned time intervals. Mixtures were filtered through a 0.22 μm membrane before analysis. Samples before and after phosphate adsorption were characterized by scanning electron microscopy to observe morphological characteristics. Thermo-gravimetry/differential scanning calorimetry was used to study the sample thermo-stability. Metal ions (e.g. calcium, aluminum) and phosphate concentration were determined by inductively coupled plasma atomic emission spectrometry. We observed a typical hydrotalcite structure in the CaAl-LDH by scanning electron microscopy, which indicates that the obtained materials are well-defined hexagonal platelet-like particles. The synthesized CaAl-LDH had good thermo-stability based on thermo-gravimetry/differential scanning calorimetry, and pyrolysis showed four mass loss stages. From batch adsorption experiments, we found that the adsorption fitted a Langmuir model (R2=0.997) very well; the maximum adsorption capacity (qmax) of 162.3 mg/g corresponded to the experimental data (166.9 mg/g), and is significantly higher than previous reports. The adsorption kinetics followed a pseudo-second-order model (R2=0.998). Additionally, co-existing competitive anions influenced phosphate adsorption in the order of CO32-> SO42-> NO3-. Adsorbent dosage and contact time could also impact CaAl-LDH phosphate adsorption capacity. CaAl-LDH in this study could be applied in the recovery and reuse of phosphate from industrial wastewater because of its outstanding performance and stability.

参考文献

[1] Hart, M. R.; Quin, B. F.; Nguyen, M. L. J. Environ. Qual. 2004, 33, 1954.
[2] Drenkova-Tuhtan, A.; Mandel, K.; Paulus, A.; Meyer, C.; Hutter, F.; Gellermann, C.; Sextl, G.; Franzreb, M.; Steinmetz, H. Water Res. 2013, 47, 5670.
[3] Gilbert, N. Nature 2009, 461, 1041.
[4] Anirudhan, T. S.; Noeline, B. F.; Mancihar, D. M. Environ. Sci. Technol. 2006, 40, 2740.
[5] Zhou, Q.; Wang, X. Z.; Liu, J. Y.; Zhang, L. Chem. Eng. J. 2012, 200, 619.
[6] Ashekuzzaman, S. M.; Jiang, J. Q. Chem. Eng. J. 2014, 246, 97.
[7] Jiang, J. Q.; Wu, L. Desalin. Water Treat. 2012, 23, 49.
[8] Aguilar, M. I.; Saez, J.; Llorens, M.; Soler, A.; Ortuno, J. F. Water Res. 2002, 36, 2910.
[9] Tang, C. C.; Chen, H. M.; Liu, M.; Ye, X. Chem. Ind. Eng. Prog. 2015, 34, 245. (唐朝春, 陈惠民, 刘名, 叶鑫, 化工进展, 2015, 34, 245.)
[10] Chen, X. L. M.S. Thesis, Beijing Forestry University, Beijing, 2014. (陈雪琳, 硕士论文, 北京林业大学, 北京, 2014.)
[11] Chitrakar, R.; Tezuka, S.; Sonoda, A.; Ooi, K.; Hirotsu, T. J. Colloid Interface Sci. 2005, 290, 45.
[12] Long, F.; Gong, J. L.; Zeng, G. M.; Chen, L.; Wang, X. Y.; Deng, J. H.; Niu, Q. Y.; Zhang, H. Y.; Zhang, X. R. Chem. Eng. J. 2011, 171, 448.
[13] Yin, L.; Lei, G. Y.; Li, C. J.; Liu, Z. J. Environ. Chem. 2012, 31, 1049. (印露, 雷国元, 李陈君, 刘志军, 环境化学, 2012, 31, 1049.)
[14] Cheng, X.; Huang, X. R.; Wang, X. Z.; Sun, D. Z. CIESC J. 2010, 61, 955. (程翔, 黄新瑞, 王兴祖, 孙德智, 化工学报, 2010, 61, 955.)
[15] Das, J.; Patra, B. S.; Baliarsingh, N.; Parida, K. M. Appl. Clay Sci. 2006, 32, 252.
[16] Sun, Z. W.; Xu, X. Q.; Hu, K.; Wang, B.; Xie, Y.; Huang, Z. Z. J. Shanghai Univ. of Eng. Sci. 2013, 27, 239. (孙照伟, 徐小强, 胡科, 王冰, 谢园, 黄中子, 上海工程技术大学学报, 2013, 27, 239.)
[17] Baliarsingh, N.; Parida, K. M.; Pradhan, G. C. RSC Adv. 2013, 46, 23865.
[18] Zhou, J.; Xu, Z. P.; Qiao, S.; Liu, Q.; Xu, Y.; Qian, G. J. Hazard. Mater. 2011, 189, 586.
[19] Tsuji, H.; Fujii, S. Appl. Clay Sci. 2014, 99, 261.
[20] Cheng, X.; Huang, X. R.; Wang, X. Z.; Zhao, B. Q.; Chen, A. Y.; Sun, D. Z. J. Hazard. Mater. 2009, 169, 958.
[21] Theiss, F. L.; Ayoko, G. A.; Frost, R. L. J. Colloid Interface Sci. 2013, 402, 114.
[22] Cai, P.; Zheng, H.; Wang, C.; Ma, H.; Hu, J.; Pu, Y.; Liang, P. J. Hazard. Mater. 2012, 213, 100.
[23] Xing, K.; Wang, H. Z.; Guo, L. G.; Song, W. D.; Zhao, Z. P. Colloids Surf., A 2008, 328, 15.
[24] Yang, K.; Yan, Y. M.; Yu, S. J.; Shan, R. R.; Yu, H. Q.; Zhu, B. C.; Du, B. Sep. Purif. Technol. 2014, 124, 36.
[25] Chen, A. Y.; Cheng, X.; Huang, X. R.; Sun, D. Z. CIESC J. 2008, 59, 2270. (陈爱燕, 程翔, 黄新瑞, 孙德智, 化工学报, 2008, 59, 2270.)
[26] Goh, K. H.; Lim, T. T.; Dong, Z. Water Res. 2008, 42, 1343.
[27] Koilraj, P.; Antonyraj, C. A.; Gupta, C.; Reddy, C. R. K.; Kannan, S. Appl. Clay Sci. 2013, 86, 111.
[28] Zhong, Q.; Li, H. Environ. Sci. 2014, 35, 1566. (钟琼, 李欢, 环境科学, 2014, 35, 1566.)
[29] Li, L.; Zhang, C. Y.; Jiao, Q. Z.; Duan, X. Chin. J. Inorg. Chem. 2001, 31, 113. (李蕾, 张春英, 矫庆泽, 段雪, 无机化学学报, 2001, 31, 113.)
[30] Zheng, J. H.; Tian, X. K.; Yu, K. C.; Wang, L. Y.; Yang, C.; He, M. Z. Acta Chim. Sinica 2006, 64, 2231. (郑建华, 田熙科, 俞开潮, 王龙艳, 杨超, 何明中, 化学学报, 2006, 64, 2231.)
[31] Zhang, X. Q.; Zeng, M. G.; Li, S. P. Acta Chim. Sinica 2013, 71, 246. (张晓晴, 曾美桂, 李淑萍, 化学学报, 2013, 71, 246.)
[32] Ho, Y. S.; McKay, G. Process Saf. Environ. Prot. 1998, 76, 332.
[33] Azizian, S. J. Colloid Interface Sci. 2004, 276, 47.
[34] Xing, K.; Wang, H. Z.; Guo, L. G.; Song, W. D.; Zhao, Z. P. Colloids Surf., A 2008, 328, 15.
[35] Novillo, C.; Guaya, D.; Avendano, A. A. P.; Armijos, C.; Cortina, J. L.; Cota,I. Fuel 2014, 138, 72.
[36] Cheng, X.; Huang, X. R.; Wang, X. Z.; Sun, D. Z. J. Hazard. Mater. 2010, 177, 516.
[37] Rout, P. R.; Bhunia, P.; Dash, R. R. Desalin. Water Treat. 2015, 54, 358.
[38] Chen, L.; Zhao, X.; Pan, B. C.; Zhang, W. X.; Hua, M.; Lv, L.; Zhang, W. M. J. Hazard. Mater. 2015, 284, 35.
[39] Zhao, W.; Chen, Y. N. Appl. Chem. Ind. 2013, 42, 450. (赵维, 陈佑宁, 应用化工, 2013, 42, 450.)
[40] Sun, D. Z.; Huang, X. R.; Cheng, X.; Chen, A. Y. Journal of Beijing Forestry University 2009, 31, 128. (孙德智, 黄新瑞, 程翔, 陈爱燕, 北京林业大学学报, 2009, 31, 128.)
[41] Yin, L.; Lei, G. Y.; Li, C. J.; Liu, Z. J. Industrial Safety and Environmetal Protection 2013, 39, 1. (印露, 雷国元, 李陈君, 刘志军, 工业安全与环保, 2013, 39, 1.)
[42] Zhang, L.; Gao, Y.; Li, M. X.; Liu, J. Y. Environ. Technol. 2015, 36, 1016.
[43] Tu, Y. J.; You, C. F.; Chang, C. K.; Chen, M. H. J. Taiwan Inst. Chem. Eng. 2015, 46, 148.
[44] Chen, T. H.; Wang, J. Z.; Wang, J.; Xie, J. J.; Zhu, C. Z.; Zhan, X. M. Int. J. Environ. Sci. Technol. 2015, 12, 885.
[45] Islam, M.; Patel, R. J. Hazard. Mater. 2009, 169, 524.
[46] Kushwaha, S.; Soni, H.; Ageetha, V.; Padmaja, P. Crit. Rev. Environ. Sci. Technol. 2013, 43, 443.
[47] Yang, L.; Shahrivari, Z.; Liu, P. K. T.; Sahimi, M.; Tsotsis, T. T. Ind. Eng. Chem. Res. 2005, 44, 6804.
[48] You, Y. W.; Vance, G. F.; Zhao, H. T. Appl. Clay Sci. 2001, 20, 13.
[49] Li, W. W.; Sheng, G. P.; Zeng, R.; Liu, X. W.; Yu, H. Q. Environ. Sci. Pollut. Res. 2012, 19, 1422.
[50] Xiong, J. B.; Mahmood, Q. Desalination 2010, 259, 59.

文章导航

/