研究展望

催化不对称光诱导自由基反应

  • 王德红 ,
  • 张龙 ,
  • 罗三中
展开
  • a 中国科学院化学研究所 分子识别与功能院重点实验室 北京 100190;
    b 中国科学院大学 北京 100049
王德红:中国科学院化学研究所2013级在读硕博生,本科就读于东北师范大学.现在主要研究光催化和伯胺催化的不对称转化反应;张龙:中国科学院化学研究所分子识别与功能重点实验室副研究员.主要从事不对称光催化、仿生伯胺催化及其理论计算研究;罗三中:中国科学院化学研究所研究员、博士生导师,分子识别与功能重点实验室副主任.主要从事仿生小分子催化合成和物理有机研究.

收稿日期: 2016-08-16

  修回日期: 2016-09-13

  网络出版日期: 2016-09-18

基金资助

项目受国家自然科学基金(Nos.21572232,21390400)资助.

Photo-induced Catalytic Asymmetric Free Radical Reactions

  • Wang Dehong ,
  • Zhang Long ,
  • Luo Sanzhong
Expand
  • a Key Laboratory of Molecular Recognition and Functions, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190;
    b University of Chinese Academy of Sciences, Beijing 100049

Received date: 2016-08-16

  Revised date: 2016-09-13

  Online published: 2016-09-18

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21572232, 21390400).

摘要

自由基反应的立体选择性调控一直是不对称催化领域的挑战性难题.近年来,光化学过程特别是可见光化学过程在有机合成中越来越受到研究人员的重视,光诱导自由基化学也再次进入人们的视野.相对传统的自由基化学,光诱导自由基化学反应条件温和,易于调控,为实现高效催化不对称自由基反应带来了新的契机,展示了蓬勃的发展潜力.本文根据光诱导产生自由基种类的不同,简要介绍最近该方向的研究进展.

本文引用格式

王德红 , 张龙 , 罗三中 . 催化不对称光诱导自由基反应[J]. 化学学报, 2017 , 75(1) : 22 -33 . DOI: 10.6023/A16080418

Abstract

Enantioselective control of free radical reactions has eluded organic chemists for decades. Echoed with the renaissance of photo-induced processes, or so called photocatalysis or photoredox catalysis in organic synthesis, photo-induced organic radical chemistry has regained its prominence in developing catalytic asymmetric radical reaction. The generally mild conditions inherited with photochemistry, particularly visible light photo-processes, have allowed for controllable generation of free radicals as well as the subsequent bond formations. The past five years have witnessed dramatic advances in exploring photo-induced catalytic asymmetric free radical reactions, and enormous potentials along this line are envisaged. This perspective gives a brief summary on the important advances in this field. Accordingly, the major advances are classified based on different radical species including α-amino/oxyl radicals, radicals generated from enones and its analogues, benzyl radicals, α-carbonyl radicals, polyhalogenated alkyl radicals and nitrogen radicals. Brief discussion of mechanism is presented whenever relevant.

参考文献

[1] (a) Parsons, A. F. An Introduction to Free Radical Chemistry, Wiley-Blackwell, Hoboken, New Jersey, 2000.
(b) Renaud, P.; Sibi, M. P. Radicals in Organic Synthesis, Wiley-VCH, Weinheim, 2001.
(c) Shang, X.; Liu, Z. Acta Chim. Sinica 2015, 73, 1275. (尚筱洁, 柳忠全, 化学学报, 2015, 73, 1275.)
[2] (a) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163.
(b) Zimmerman, J.; Sibi, M. P. Enantioselective Radical Reactions. In Radicals in Synthesis I, Springer, Berlin, Heidelberg, 2006, pp. 107~162.
[3] (a) Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. Science 2007, 316, 582.
(b) Comito, R. J.; Finelli, F. G.; MacMillan, D. W. J. Am. Chem. Soc. 2013, 135, 9358.
(c) Jui, N. T.; Garber, J. A.; Finelli, F. G.; MacMillan, D. W. J. Am. Chem. Soc. 2012, 134, 11400.
(d) Pham, P. V.; Ashton, K.; MacMillan, D. W. Chem. Sci. 2011, 2, 1470.
(e) Mastracchio, A.; Warkentin, A. A.; Walji, A. M.; MacMillan, D. W. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20648.
(f) Devery, J. J.; Conrad, J. C.; MacMillan, D. W.; Flowers, R. A. Angew. Chem. Int. Ed. 2010, 49, 6106.
(g) Jui, N. T.; Lee, E. C.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 10015.
(h) Van Humbeck, J. F.; Simonovich, S. P.; Knowles, R. R.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 10012.
(i) Devery, J. J.; Conrad, J. C.; MacMillan, D. W.; Flowers, R. A. J. Am. Chem. Soc. 2010, 132, 6106.
(j) Rendler, S.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 5027.
(k) Wilson, J. E.; Casarez, A. D.; MacMillan, D. W. J. Am. Chem. Soc. 2009, 131, 11332.
(l) Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. J. Am. Chem. Soc. 2009, 131, 11640.
(m) Amatore, M.; Beeson, T. D.; Brown, S. P.; MacMillan, D. W. Angew. Chem. Int. Ed. 2009, 48, 5121.
(n) Graham, T. H.; Jones, C. M.; Jui, N. T.; MacMillan, D. W. J. Am. Chem. Soc. 2008, 130, 16494.
(o) Kim, H.; MacMillan, D. W. J. Am. Chem. Soc. 2008, 130, 398.
(p) Jang, H. Y.; Hong, J. B.; MacMillan, D. W. J. Am. Chem. Soc. 2007, 129, 7004.
[4] For selected reviews, see:(a) Peñ-López, M.; Rosas-Hernández, A.; Beller, M. Angew. Chem. Int. Ed. 2015, 54, 5006.
(b) Hopkinson, M. N.; Sahoo, B.; Li, J. L.; Glorius, F. Chem. Eur. J. 2014, 20, 3874.
(c) Hari, D. P.; König, B. Angew. Chem. Int. Ed. 2013, 52, 4734.
(d) Xuan, J.; Lu, L. Q.; Chen, J. R.; Xiao, W. J. Eur. J. Org. Chem. 2013, 6755.
(e) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013, 11, 2387.
(f) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Chem. Rev. 2013, 113, 5322.
(g) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.
(h) Xuan, J.; Xiao, W. J. Angew. Chem. Int. Ed. 2012, 51, 6828.
(i) Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40, 102.
(j) Teplý, F. Collect. Czech. Chem. Commun. 2011, 76, 859.
(k) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
(l) Acta Chim. Sinica 2015, 73, 85. (谭芬, 肖文精, 化学学报, 2015, 73, 85.)
[5] Ruiz Espelt, L.; McPherson, I. S.; Wiensch, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2015, 137, 2452.
[6] Lenhart, D.; Bauer, A.; Pöthig, A.; Bach, T. Chem. Eur. J. 2016, 22, 6519.
[7] Bauer, A.; Westkämper, F.; Grimme, S.; Bach, T. Nature 2005, 436, 1139.
[8] Murphy, J. J.; Bastida, D.; Paria, S.; Fagnoni, M.; Melchiorre, P. Nature 2016, 532, 218.
[9] Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T. J. Am. Chem. Soc. 2015, 137, 13768.
[10] (a) Wang, C.; Qin, J.; Shen, X.; Riedel, R.; Harms, K.; Meggers, E. Angew. Chem. Int. Ed. 2016, 55, 685.
(b) Ma, J.; Harms, K.; Meggers, E. Chem. Commun. 2016, 52, 10183.
[11] Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. J. Am. Chem. Soc. 2016, 138, 1832.
[12] Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735.
[13] (a) Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344, 392.
(b) Amador, A. G.; Sherbrook, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2016, 138, 4722.
[14] Shih, H. W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 13600.
[15] Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Röse, P.; Chen, L. A.; Meggers, E. Nature 2014, 515, 100.
[16] (a) Arceo, E.; Jurberg, I. D.; Álvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750.
(b) Arceo, E.; Bahamonde, A.; Bergonzini, G.; Melchiorre, P. Chem. Sci. 2014, 5, 2438.
[17] Huo, H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936.
[18] (a) Nicewicz, D. A.; MacMillan, D. W. Science, 2008, 322, 77.
(b) Zhu, Y.; Zhang, L.; Luo, S. J. Am. Chem. Soc. 2014, 136, 14642.
[19] Silvi, M.; Arceo, E.; Jurberg, I. D.; Cassani, C.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 6120.
[20] Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681.
[21] Nagib, D. A.; Scott, M. E.; MacMillan, D. W. J. Am. Chem. Soc. 2009, 131, 10875.
[22] Huo, H.; Wang, C.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2015, 137, 9551.
[23] Wo?niak, ?.; Murphy, J. J.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 5678.
[24] (a) Cecere, G.; König, C. M.; Alleva, J. L.; MacMillan, D. W. J. Am. Chem. Soc. 2013, 135, 11521.
(b) Shen, X.; Harms, K.; Marsch, M.; Meggers, E. Chem. Eur. J. 2016, 22, 9102.

文章导航

/