综述

钌(II)光活化化疗试剂研究进展

  • 周前雄 ,
  • 王雪松
展开
  • 中国科学院理化技术研究所光化学转换与功能材料重点实验室 北京 100190
周前雄,2010年于中国科学院理化技术研究所获得博士学位并留所工作,目前任副研究员,主要从事金属配合物光动力抗肿瘤以及光动力抗菌方面的研究;王雪松,中国科学院理化技术研究所研究员、博士生导师.主要从事药物及药物中间体的光化学合成以及光疗药物设计合成及其机理研究.

收稿日期: 2016-09-05

  修回日期: 2016-10-09

  网络出版日期: 2016-10-10

基金资助

项目受国家自然科学基金(Grant Nos.21273259,21571181)资助.

Advances in Ru(II)-based Photoactivated Chemotherapy Agents

  • Zhou Qianxiong ,
  • Wang Xuesong
Expand
  • Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190

Received date: 2016-09-05

  Revised date: 2016-10-09

  Online published: 2016-10-10

Supported by

Project supported by the National Natural Science Foundation of China (Grant Nos. 21273259, 21571181).

摘要

许多钌(II)配合物在水溶液中可以发生光诱导配体解离,形成的水合物能够与DNA共价结合.Ru(II)配合物的这一特性近年来在抗癌药物研发领域被利用来发展新型光活化化疗试剂.通过合理选择配体和调控配位构型,光活化化疗试剂可以实现抗癌活性物种在肿瘤组织的高选择性且计量可控的释放,有希望在提高药物疗效的同时降低其毒副作用.本文对近年来钌(II)光活化化疗试剂的研究进展做了全面的综述,并展望了该领域的未来发展方向.

本文引用格式

周前雄 , 王雪松 . 钌(II)光活化化疗试剂研究进展[J]. 化学学报, 2017 , 75(1) : 49 -59 . DOI: 10.6023/A16090470

Abstract

Many Ru(II) complexes can undergo photoinduced ligand dissociation in aqueous solutions, and the formed aqua Ru(II) species may bind to DNA covalently. This property has been applied to develop novel photoactivated chemotherapy (PACT) agents for cancer treatment in recent years. By finely tuning ligand structures and coordination configurations, PACT may realize highly selective and on-demand release of active species in cancer tissues, leading to an improved efficacy and diminished side effects. In this review, the progress in Ru(II)-based PACT agents was fully discussed and a perspective for their future development was included.

参考文献

[1] Romero-Canelón, I.; Sadler, P. J. Inorg. Chem. 2013, 52, 12276.
[2] Mjos, K. D.; Orvig, C. Chem. Rev. 2014, 114, 4540.
[3] Gaynor, D.; Griffith, D. M. Dalton Trans. 2012, 41, 13239.
[4] Liu, Y.; Chen, X.; Zhang, L.; Sun, D.; Zhou, Y.; Chen, L.; Liu, J. Acta Chim. Sinica 2014, 72, 473 (in Chinese). (刘莹, 陈小曼, 张郎棋, 孙冬冬, 周艳晖, 陈兰美, 刘杰, 化学学报, 2014, 72, 473.)
[5] Zhou, S.; Xue, X.; Jiang, B.; Lu, C.; Tian, Y.; Jiang, M. Acta Chim. Sinica 2011, 69, 2335 (in Chinese). (周双生, 薛璇, 姜波, 鲁传华, 田玉鹏, 蒋明华, 化学学报, 2011, 69, 2335.)
[6] Xia, Q.; He, Q.; Xu, D.; Li, X.; Sun, D. Acta Chim. Sinica 2010, 68, 775 (in Chinese). (夏庆春, 何其庄, 许东芳, 李兴玉, 孙大志, 化学学报, 2010, 68, 775.)
[7] Yin, F.-L.; Shen, J.; Zou, J.-J.; Li, R.-C.; Acta Chim. Sinica 2003, 61, 556 (in Chinese). (尹富玲, 申佳, 邹佳嘉, 李荣昌, 化学学报, 2003, 61, 556.)
[8] Rosenberg, B.; Vancamp, L.; Krigas, T. Nature 1965, 205, 698.
[9] Rosenberg, B.; VanCamp, L.; Trosko, J. E.; Mansour, V. H. Nature 1969, 222, 385.
[10] Wheate, N. J.; Walker, S.; Craig, G. E.; Oun, R. Dalton Trans. 2010, 39, 8113.
[11] Bugar?i?, ?. D.; Bogojeski, J.; Petrovi?, B.; Hochreuther, S.; van Eldik, R. Dalton Trans. 2012, 41, 12329.
[12] Fanelli, M.; Formica, M.; Fusi, V.; Giorgi, L.; Micheloni, M.; Paoli, P. Coord. Chem. Rev. 2016, 310, 41.
[13] Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J. Chem. Rev. 2016, 116, 3436.
[14] Mackay, F. S.;Woods, J. A.; Heringova, P.; Kašpárková, J.; Pi-zarro, A. M.; Moggach, S. A.; Parsons, S.; Brabec, V.; Sadler, P. J. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 20743.
[15] Farrer, N. J.; Woods, J. A.; Salassa, L.; Zhao, Y.; Robinson, K. S.; Clarkson, G.; Mackay, F. S.; Sadler, P. J. Angew. Chem. Int. Ed. 2010, 49, 8905.
[16] Kasparkova, J.; Kostrhunova, H.; Novakova, O.; K?ikavová, R.; Van?o, J.; Trávní?k, Z.; Brabec, V. Angew. Chem. Int. Ed. 2015, 54, 14478.
[17] Glazer, E. C. Isr. J. Chem. 2013, 53, 391.
[18] Farrer, N. J.; Salassa, L.; Sadler, P. J. Dalton Trans. 2009, 10690.
[19] Detty, M. R.; Gibson, S. L.; Wagner, S. J. J. Med. Chem. 2004, 47, 3897.
[20] Brown, J. M.; Wilson, W. R. Nat. Rev. Cancer 2004, 4, 437.
[21] Minchinton, A. I.; Tannock, I. F. Nat. Rev. Cancer 2006, 6, 583.
[22] Knoll, J. D.; Turro, C. Coord. Chem. Rev. 2015, 282-283, 110.
[23] Gianferrara, T.; Bratsos, I.; Alessio, E. Dalton Trans. 2009, 7588.
[24] Lincoln, R.; Kohler, L.; Monro, S.; Yin, H.; Stephenson, M.; Zong, R.; Chouai, A.; Dorsey, C.; Hennigar, R.; Thummel, R. P.; McFarland, S. A. J. Am. Chem. Soc. 2013, 135, 17161.
[25] Sun, Y.; Joyce, L. E.; Dickson, N. M.; Turro, C. Chem. Commun. 2010, 46, 2426.
[26] Zhou, Q. X.; Lei, W. H.; Chen, J. R.; Li, C.; Hou, Y. J.; Wang, X. S.; Zhang, B. W. Chem.-Eur. J. 2010, 16, 3157.
[27] Zhou, Q. X.; Lei, W. H.; Sun, Y.; Chen, J. R.; Li, C.; Hou, Y. J.; Wang, X. S.; Zhang, B. W. Inorg. Chem. 2010, 49, 4729.
[28] Zhou, Q. X.; Yang, F.; Lei, W. H.; Chen, J. R.; Li, C.; Hou, Y. J.; Ai, X. C.; Zhang, J. P.; Wang, X. S.; Zhang, B. W. J. Phys. Chem. B 2009, 113, 11521.
[29] Liu, Y.; Hammitt, R.; Lutterman, D. A.; Joyce, L. E.; Thummel, R. P.; Turro, C. Inorg. Chem. 2009, 48, 375.
[30] Poteet, S. A.; Majewski, M. B.; Breitbach, Z. S.; Griffith, C. A.; Singh, S.; Armstrong, D. W.; Wolf, M. O.; MacDonnell, F. M. J. Am. Chem. Soc. 2013, 135, 2419.
[31] Vanderlinden, W.; Blunt, M.; David, C. C.; Moucheron, C.; Kirsch-De Mesmaeker, A.; De Feyter, S. J. Am. Chem. Soc. 2012, 134, 10214.
[32] Boggio-Pasqua, M.; Vicendo, P.; Oubal, M.; Alary, F.; Heully, J.-L. Chem.-Eur. J. 2009, 15, 2759.
[33] Lecomte, J.-P.; Kirsch-De Mesmaeker, A.; Feeney, M. M.; Kelly, J. M. Inorg. Chem. 1995, 34, 6481.
[34] Zayat, L.; Calero, C.; Alborés P.; Baraldo, L.; Etchenique, R. J. Am. Chem. Soc. 2003, 125, 882.
[35] Bonnet, S.; Limburg, B.; Meeldijk, J. D.; Klein Gebbink, R. J. M.; Killian, J. A. J. Am. Chem. Soc. 2011, 133, 252.
[36] Respondek, T.; Garner, R. N.; Herroon, M. K.; Podgorski, I.; Turro, C.; Kodanko, J. J. J. Am. Chem. Soc. 2011, 133, 17164.
[37] Miguel, V. S.; Álvarez, M.; Filevich, O.; Etchenique, R.; del Campo, A. Langmuir 2012, 28, 1217.
[38] Mosquera, J.; Sánchez, M. R.; Mascareñas, J. L.; Vázquez, M. E. Chem. Commun. 2015, 51, 5501.
[39] Nakanishi, K.; Koshiyama, T.; Iba, S.; Ohba, M. Dalton Trans. 2015, 44, 14200.
[40] Griepenburg, J. C.; Rapp, T. L.; Carroll, P. J.; Eberwineb, J.; Dmochowski, I. J. Chem. Sci. 2015, 6, 2342.
[41] Li, A.; White, J. K.; Arora, K.; Herroon, M. K.; Martin, P. D.; Bernhard Schlegel, H.; Podgorski, I.; Turro, C.; Kodanko, J. J. Inorg. Chem. 2016, 55, 10.
[42] Sharma, R.; Knoll, J. D.; Ancona, N.; Martin, P. D.; Turro, C.; Kodanko, J. J. Inorg. Chem. 2015, 54, 1901.
[43] Ford, P. C. Coord. Chem. Rev. 1982, 44, 61.
[44] Tfouni, E. Coord. Chem. Rev. 2000, 196, 281.
[45] Van Houten, J.; Watts, R. J. Inorg. Chem. 1978, 17, 3381.
[46] Durante, V. A.; Ford, P. C. Inorg. Chem. 1979, 18, 588.
[47] Singh, T. N.; Turro, C. Inorg. Chem. 2004, 43, 7260.
[48] Rillema, D. P.; Blanton, C. B.; Shaver, R. J.; Jackman, D. C.; Boldaji, M.; Bundy, S.; Worl, L. A.; Meyer, T. J. Inorg. Chem. 1992, 31, 1600.
[49] Liu, Y.; Turner, D. B.; Singh, T. N.; Angeles-Boza, A. M.; Chouai, A.; Dunbar, K. R.; Turro, C. J. Am. Chem. Soc. 2009, 131, 26.
[50] Arora, K.; White, J. K. Sharma, R.; Mazumder, S.; Martin, P. D.; Schlegel, H. B.; Turro, C.; Kodanko, J. K. Inorg. Chem. 2016, 55, 6968.
[51] Knoll, J. D.; Albani, B. A.; Durr, C. B.; Turro, C. J. Phys. Chem. A 2014, 118, 10603.
[52] Albani, B. A.; Durr, C. B.; Turro, C. J. Phys. Chem. A 2013, 117, 13885.
[53] Garner, R. N.; Joyce, L. E.; Turro, C. Inorg. Chem. 2011, 50, 4384.
[54] Howerton, B. S.; Heidary, D. K.; Glazer, E. C. J. Am. Chem. Soc. 2012, 134, 8324.
[55] Hidayatullah, A. N.; Wachter, E.; Heidary, D. K.; Parkin, S.; Glazer, E. C. Inorg. Chem. 2014, 53, 10030.
[56] Wachter, E.; Heidary, D. K.; Howerton, B. S.; Parkin, S.; Glazer, E. C. Chem. Commun. 2012, 48, 9649.
[57] Dickerson, M.; Howerton, B.; Baeb, Y.; Glazer, E. C. J. Mater. Chem. B 2016, 4, 394.
[58] Friedman, A. E.; Chambron, J.-C.; Sauvage, J.-P.; Turro, N. J.; Barton, J. K. J. Am. Chem. Soc. 1990, 112, 4960.
[59] Wachter, E.; Howerton, B. S.; Hall, E. C.; Parkin, S.; Glazer, E. C. Chem. Commun. 2014, 50, 311.
[60] Wachter, E.; Glazer, E. C. J. Phys. Chem. A 2014, 118, 10474.
[61] Wachter, E.; Moyá, D.; Parkin, S.; Glazer, E. C. Chem.-Eur. J. 2016, 22, 550.
[62] Cleare, M. J.; Hoeschele, J. D. Bioinorg. Chem. 1973, 2, 187.
[63] Farrell, N. Transition Metal Complexes as Drugs and Chemotherapeutic Agents, Kluwer, Dordrecht, Netherlands, 1989.
[64] Van Rixel, V. H. S; Siewert, B.; Hopkins, S. L.; Askes, S. H. C.; Busemann, A.; Siegler, M. A.; Bonnet, S. Chem. Sci. 2016, 7, 4922.
[65] Wachter, E.; Zamora, A.; Heidary, D. K.; Ruizb, J.; Glazer, E. C. Chem. Commun. 2016, 52, 10121.
[66] D?browski, J. M.; Arnaut, L. G. Photochem. Photobiol. Sci. 2015, 14, 1765.
[67] Sears, R. B.; Joyce, L. E.; Ojaimi, M.; Gallucci, J. C.; Thummel, R. P.; Turro, C. J. Inorg. Biochem. 2013, 121, 77.
[68] Albani, B. A.; Peña, B.; Dunbar, K. R.; Turro, C. Photochem. Photobiol. Sci. 2014, 13, 272.
[69] Huang, H.; Zhang, P.; Chen, Y.; Ji, L.; Chao, H. Dalton Trans. 2015, 44, 15602.
[70] Ruminski, R. R.; Degroff, C.; Smith, S. J. Inorg. Chem. 1992, 31, 3325.
[71] Rillema, D. P.; Mack, K. B. Inorg. Chem. 1982, 21, 3849.
[72] Ernst, S.; Kasack, V.; Kaim, W. Inorg. Chem. 1988, 27, 1146.
[73] Albani, B. A.; Peña, B.; Saha, S.; White, J. K.; Schaeffer, A. M.; Dunbar, K. R.; Turro, C. Chem. Commun. 2015, 51, 16522.
[74] Chen, Y.; Jiang, G.; Zhou, Q.; Zhang, Y.; Li, K.; Zheng, Y.; Zhang, B.; Wang, X. RSC Adv. 2016, 6, 23804.
[75] Greenough, S. E.; Horbury, M. D.; Smith, N. A.; Sadler, P. J.; Paterson, M. J.; Stavros, V. G. ChemPhysChem 2016, 17, 221.
[76] Albani, B. A.; Peña, B.; Leed, N. A.; Paula, N. A. B. G. D.; Pavani, C.; Baptista, M. S.; Dunbar, K. R.; Turro, C. J. Am. Chem. Soc. 2014, 136, 17095.
[77] Knoll, J. D.; Albani, B. A.; Turro, C. Chem. Commun. 2015, 51, 8777.
[78] Knoll, J. D.; Albani, B. A.; Turro, C. Acc. Chem. Res. 2015, 48, 2280.
[79] Loftus, L. M.; White, J. K.; Albani, B. A.; kohler, L.; Kodanko, J. K.; Thummel, R. P.; Dunba, K. R.; Turro, C. Chem.-Eur. J. 2016, 22, 3704.
[80] Zheng, Y.; Zhou, Q.-X.; Lei, W.-H.; Hou, Y.-J.; Li, K.; Chen, Y.-J.; Zhang, B.-W.; Wang, X.-S. Chem. Commun. 2015, 51, 428.
[81] Zheng, Y.; Zhou, Q.-X.; Zhang, Y.-Y.; Li, C.; Hou, Y.-J.; Wang, X.-S. Dalton Trans. 2016, 45, 2897.
[82] Gamer, B. N.; Gallucci, J. C.; Dunbar, K. R.; Turro, C. Inorg. Chem. 2011, 50, 9213.
[83] Sgambellone, M. A.; David, A.; Garner, R. N.; Dunbar, K. R.; Turro, C. J. Am. Chem. Soc. 2013, 135, 11274.
[84] Respondek, T.; Garmer, R. N.; Herroon, M. K.; Podgorski, I.; Turro, C.; Kodanko, J. J. J. Am. Chem. Soc. 2011, 133, 17164.
[85] Respondek, T.; Sharma, R.; Herroon, M. K.; Garmer, R. N.; Knoll, J. D.; Cueny, E.; Turro, C.; Podgorski, I.; Kodanko, J. J. ChemMedChem 2014, 9, 1306.
[86] Ramalho, S. D.; Sharma, R.; White, J. K.; Aggarwal, N.; Chalasani, A.; Sameni, M.; Moin, K.; Vieira, P. C.; Turro, C.; Kodanko, J. J.; Sloane, B. F. Plos One 2015, DOI:10.1371/journal.pone.0142527
[87] Zhou, Q.-X.; Zheng, Y.; Wang, T.-J.; Chen, Y.-J.; Li, K.; Zhang, Y.-Y.; Li. C.; Hou, Y.-J.; Wang, X.-S. Chem. Commun. 2015, 51, 10684.
[88] Magennis, S. W.; Habtemariam, A.; Novakova, O.; Henry, J. B.; Meier, S.; Parsons, S.; Oswald, L. D. H.; Brabec, V.; Sadler, P. J. Inorg. Chem. 2007, 46, 5059.
[89] Betanzos-Lara, S.; Salassa, L.; Habtemariam, A.; Sadler, P. J. Chem. Commun. 2009, 43, 6622.
[90] Barragán, F.; López-Senín, P.; Salassa, L.; Betanzos-Lara, S.; Habtemariam, A.; Moreno, V.; Sadler, P. J.; Marchán, V. J. Am. Chem. Soc. 2011, 133, 14098.
[91] Zhou, Q.-X.; Lei, W.-H.; Hou, Y.-J.; Chen, Y.-J.; Li, C.; Zhang, B.-W.; Wang, X.-S. Dalton Trans. 2013, 42, 2786.
[92] Wang, T.-J.; Zhou, Q.-X.; Zhang, Y.-Y.; Zheng, Y.; Wang, W.-B.; Hou, Y.-J.; Jiang, G.-Y.; Cheng, X.-X.; Wang, X.-S. RSC Adv. 2016, 6, 45652.
[93] Chen, Y.-J.; Lei, W.-H.; Jiang, G.-Y.; Hou, Y.-J.; Li, C.; Zhang, B.-W.; Zhou, Q.-X.; Wang, X.-S. Dalton Trans. 2014, 43, 15375.
[94] Chen, Y.-J.; Lei, W.-H.; Hou, Y.-J.; Li, C.; Jiang, G.-Y.; Zhang, B.-W.; Zhou, Q.-X.; Wang, X.-S. Dalton Trans. 2015, 44, 7347.
[95] Chen, Y.-M.; Jiang, G.-Y.; Wang, X.-S. Imaging Sci. Photochem. 2016, 34, 297 (in Chinese). (陈雨濛, 姜国玉, 王雪松, 影像科学与光化学, 2016, 34, 297.)

文章导航

/