综述

锂硫电池先进功能隔膜的研究进展

  • 黄佳琦 ,
  • 孙滢智 ,
  • 王云飞 ,
  • 张强
展开
  • a 北京理工大学前沿交叉科学研究院 材料学院 北京 100081;
    b 清华大学化学工程系 绿色反应工程与工艺北京市重点实验室 北京 100084;
    c 清华大学材料学院 北京 100084
黄佳琦,男,博士,特别研究员,主要从事隔膜、电解质与能源材料相关领域的研究;孙滢智,男,在读本科生,主要从事高性能锂硫电池中离子选择性隔膜制备与性能研究;孙滢智,男,在读本科生,主要从事高性能锂硫电池中离子选择性隔膜制备与性能研究;张强,男,博士,万人计划青年拔尖人才,国家优秀青年基金获得者.主要从事能源材料与能源化学工程相关领域的研究.

收稿日期: 2016-08-30

  修回日期: 2016-11-10

  网络出版日期: 2016-11-24

基金资助

项目受国家重点研发计划(No.2016YFA0202500)、国家自然科学基金(Nos.21306103,21422604)和清华大学自主科研计划(No.20161080166)资助.

Review on Advanced Functional Separators for Lithium-Sulfur Batteries

  • Huang Jiaqi ,
  • Sun Yingzhi ,
  • Wang Yunfei ,
  • Zhang Qiang
Expand
  • a Advanced Research Institute for Multidisciplinary Science, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081;
    b Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084;
    c School of Materials Science and Engineering, Tsinghua University, Beijing 100084

Received date: 2016-08-30

  Revised date: 2016-11-10

  Online published: 2016-11-24

Supported by

Project supported by the National Key Research and Development Program of China (No. 2016YFA0202500), Natural Scientific Foundation of China (Nos. 21306103 and 21422604), and Tsinghua University Initiative Scientific Research Program (No. 20161080166).

摘要

随着电子设备和电动汽车对储能设备性能要求的不断提高,锂硫电池因其多电子转化化学赋予的高能量密度受到广泛关注.当前锂硫电池的实用化受到库伦效率低、正极容量快速衰减、负极循环性能差等问题的制约.针对锂硫电池上述瓶颈,设计多功能电解质系统有望大幅提升活性材料的利用效率及循环寿命.本文综述了近年来锂硫电池中多功能隔膜系统的研究进展,具体包括面向抑制副反应的选择性透过隔膜、面向正极的低界面电阻隔膜以及面向稳定负极界面的隔膜.并展望了锂硫电池多功能隔膜系统面临的科学挑战与未来发展的机遇.

本文引用格式

黄佳琦 , 孙滢智 , 王云飞 , 张强 . 锂硫电池先进功能隔膜的研究进展[J]. 化学学报, 2017 , 75(2) : 173 -188 . DOI: 10.6023/A16080454

Abstract

As the demand to energy storage devices for portable electronics and electric vehicles increase, lithium-sulfur (Li-S) batteries have attracted much attention for its extremely high energy density. However, the low coulombic efficiency, rapid fading capacity, and poor cycle performance of lithium anode hinder the demonstration of practical Li-S cells. The advanced functional separator/interlayer system have been proposed and verified to retard the shuttle of polysulfides and extend the cycling life of a Li-S cell. In this review, the progress on multifunctional separators/interlayers for lithium sulfur batteries are summarized, including permselective separator inhibiting polysulfide shuttles, separator with low interfacial resistance, and composite electrolyte stabilizing anode and retarding the formation of Li dendrites. New insights into challenge and opportunities of multifunctional separator/interlayer system are also prospected.

参考文献

[1] Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.
[2] Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Adv. Mater. 2010, 22, E28.
[3] Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.
[4] Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172.
[5] Manthiram, A.; Chung, S. H.; Zu, C. Adv. Mater. 2015, 27, 1980.
[6] Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem., Int. Ed. 2013, 52, 13186.
[7] Yin, Y. X.; Yao, H. R.; Guo, Y. G. Chin. Phys. B 2016, 25, 018801.
[8] Borchardt, L.; Oschatz, M.; Kaskel, S. Chem. Eur. J. 2016, 22, 7324.
[9] Gu, X. X.; Zhang, S. Q.; Hou, Y. L. Chin. J. Chem. 2016, 34, 11.
[10] Zhang, Q.; Cheng, X. B.; Huang, J. Q.; Peng, H. J.; Wei, F. New Carbon Mater. 2014, 29, 241.
[11] Xu, G. Y.; Ding, B.; Pan, J.; Nie, P.; Shen, L. F.; Zhang, X. G. J. Mater. Chem. A 2014, 2, 12662.
[12] Lin, Z.; Liang, C. D. J. Mater. Chem. A 2015, 3, 936.
[13] Kang, W.; Deng, N.; Ju, J.; Li, Q.; Wu, D.; Ma, X.; Li, L.; Naebe, M.; Cheng, B. Nanoscale 2016, 8, 16541.
[14] Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y. Chem. Soc. Rev. 2016, 45, 5605.
[15] Wang, J. L.; Yang, J.; Xie, J. Y.; Xu, N. X. Adv. Mater. 2002, 14, 963.
[16] Ji, X. L.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500.
[17] Evers, S.; Nazar, L. F. Acc. Chem. Res. 2013, 46, 1135.
[18] Li, Z.; Huang, Y.; Yuan, L.; Hao, Z.; Huang, Y. Carbon 2015, 92, 41.
[19] Yang, Y.; Zheng, G.; Cui, Y. Chem. Soc. Rev. 2013, 42, 3018.
[20] Wang, J. G.; Xie, K.; Wei, B. Nano Energy 2015, 15, 413.
[21] Wu, S.; Ge, R.; Lu, M.; Xu, R.; Zhang, Z. Nano Energy 2015, 15, 379.
[22] Imtiaz, S.; Zhang, J.; Zafar, Z. A.; Ji, S.; Huang, T.; Anderson, J. A.; Zhang, Z.; Huang, Y. Sci. China Mater. 2016, 59, 389.
[23] Yuan, S. Y.; Guo, Z. Y.; Wang, L. N.; Hu, S.; Wang, Y. G.; Xia, Y. Y. Adv. Sci. 2015, 2, 1500071.
[24] Tang, C.; Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Cheng, X. B.; Tian, G. L.; Peng, H. J.; Wei, F. Adv. Mater. 2014, 26, 6100.
[25] Song, J.; Xu, T.; Gordin, M. L.; Zhu, P.; Lv, D.; Jiang, Y. B.; Chen, Y.; Duan, Y.; Wang, D. Adv. Funct. Mater. 2014, 24, 1243.
[26] Peng, H. J.; Hou, T. Z.; Zhang, Q.; Huang, J. Q.; Cheng, X. B.; Guo, M. Q.; Yuan, Z.; He, L. Y.; Wei, F. Adv. Mater. Interfaces 2014, 1, 1400227.
[27] Tao, X.; Wang, J.; Liu, C.; Wang, H.; Yao, H.; Zheng, G.; Seh, Z. W.; Cai, Q.; Li, W.; Zhou, G.; Zu, C.; Cui, Y. Nat. Commun. 2016, 7, 11203.
[28] Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Nano Lett. 2016, 16, 519.
[29] Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Angew. Chem. Int. Ed. 2016, 55, 3982.
[30] Wang, J. L.; He, Y. S.; Yang, J. Adv. Mater. 2015, 27, 569.
[31] Wei, Y.; Tao, Y.; Kong, Z.; Liu, L.; Wang, J.; Qiao, W.; Ling, L.; Long, D. Energy Storage Mater. 2016, 5, 171.
[32] Liang, J.; Sun, Z. H.; Li, F.; Cheng, H. M. Energy Storage Mater. 2016, 2, 76.
[33] Lv, W.; Li, Z. J.; Deng, Y. Q.; Yang, Q. H.; Kang, F. Y. Energy Storage Mater. 2016, 2, 107.
[34] Yu, M.; Li, R.; Wu, M.; Shi, G. Energy Storage Mater. 2015, 1, 51.
[35] Yuan, Z.; Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Wang, D. W.; Cheng, X. B.; Zhang, Q. Adv. Funct. Mater. 2014, 24, 6105.
[36] Zhao, Q.; Hu, X. F.; Zhang, K.; Zhang, N.; Hu, Y. X.; Chen, J. Nano Lett. 2015, 15, 721.
[37] Zhang, C.; Yang, Q. H. Sci. China-Mater. 2015, 58, 349.
[38] Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. Adv. Sci. 2016, 3, 1500213.
[39] Jin, Z. Q.; Xie, K.; Hong, X. B. Acta Chim. Sinica 2014, 72, 11. (金朝庆, 谢凯, 洪晓斌, 化学学报, 2014, 72, 11.)
[40] Cao, R. G.; Xu, W.; Lv, D. P.; Xiao, J.; Zhang, J. G. Adv. Energy Mater. 2015, 5, 1402273.
[41] Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Wei, F.; Zhang, Q. Small 2014, 10, 4257.
[42] Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, R.; Zhao, C. Z.; Zhang, Q. ACS Nano 2015, 9, 6373.
[43] Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Nat. Commun. 2015, 6, 8058.
[44] Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Adv. Mater. 2016, 28, 2155.
[45] Sun, Y.; Zheng, G.; Seh, Z. W.; Liu, N.; Wang, S.; Sun, J.; Lee, H. R.; Cui, Y. Chem 2016, 1, 287.
[46] Suo, L.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4, 1481.
[47] Zhao, C. Z.; Cheng, X. B.; Zhang, R.; Peng, H. J.; Huang, J. Q.; Ran, R.; Huang, Z. H.; Wei, F.; Zhang, Q. Energy Storage Mater. 2016, 3, 77.
[48] Yan, C.; Cheng, X.-B.; Zhao, C.-Z.; Huang, J.-Q.; Yang, S.-T.; Zhang, Q. J. Power Sources 2016, 327, 212.
[49] Huang, J. Q.; Zhang, Q.; Wei, F. Energy Storage Mater. 2015, 1, 127.
[50] Arora, P.; Zhang, Z. M. Chem. Rev. 2004, 104, 4419.
[51] Kang, W. M.; Ma, X. M.; Zhao, Y. X.; Zhao, H. H.; Cheng, B. W.;Liu, Y. B. Acta Polym. Sin. 2015, 1258. (康卫民, 马晓敏, 赵义侠, 赵卉卉, 程博闻, 刘延波, 高分子学报, 2015, 1258.)
[52] Mikhaylik, Y. V.; Akridge, J. R. J. Electrochem. Soc. 2004, 151, A1969.
[53] Jin, Z. Q.; Xie, K.; Hong, X. B.; Hu, Z. Q.; Liu, X. J. Power Sources 2012, 218, 163.
[54] Yu, X.; Joseph, J.; Manthiram, A. J. Mater. Chem. A 2015, 3, 15683.
[55] Huang, J. Q.; Zhang, Q.; Peng, H. J.; Liu, X. Y.; Qian, W. Z.; Wei, F. Energy Environ. Sci. 2014, 7, 347.
[56] Xu, W. T.; Peng, H. J.; Huang, J. Q.; Zhao, C. Z.; Cheng, X. B.; Zhang, Q. ChemSusChem 2015, 8, 2892.
[57] Bauer, I.; Thieme, S.; Bruckner, J.; Althues, H.; Kaskel, S. J. Power Sources 2014, 251, 417.
[58] Yu, X.; Manthiram, A. Adv. Energy Mater. 2015, 5, 1500350.
[59] Bauer, I.; Kohl, M.; Althues, H.; Kaskel, S. Chem. Commun. 2014, 50, 3208.
[60] Liu, X.; Shan, Z.; Zhu, K.; Du, J.; Tang, Q.; Tian, J. J. Power Sources 2015, 274, 85.
[61] Zhuang, T. Z.; Huang, J. Q.; Peng, H. J.; He, L. Y.; Cheng, X. B.; Chen, C. M.; Zhang, Q. Small 2016, 12, 381.
[62] Hao, Z. X.; Yuan, L. X.; Li, Z.; Liu, J.; Xiang, J. W.; Wu, C.; Zeng, R.; Huang, Y. H. Electrochim. Acta 2016, 200, 197.
[63] Cai, W. L.; Li, G. R.; He, F.; Jin, L. M.; Liu, B. H.; Li, Z. P. J. Power Sources 2015, 283, 524.
[64] Jin, Z. Q.; Xie, K.; Hong, X. B. RSC Adv. 2013, 3, 8889.
[65] Gu, M.; Lee, J.; Kim, Y.; Kim, J. S.; Jang, B. Y.; Lee, K. T.; Kim, B. S. RSC Adv. 2014, 4, 46940.
[66] Conder, J.; Forner-Cuenca, A.; Gubler, E. M.; Gubler, L.; Novák, P.; Trabesinger, S. ACS Appl. Mater. Interfaces 2016, 8, 18822.
[67] Conder, J.; Urbonaite, S.; Streich, D.; Novák, P.; Gubler, L. RSC Adv. 2015, 5, 79654.
[68] Zeng, F.; Jin, Z.; Yuan, K.; Liu, S.; Cheng, X.; Wang, A.; Wang, W.; Yang, Y. S. J. Mater. Chem. A 2016, 4, 12319.
[69] Ahn, W.; Lim, S. N.; Lee, D. U.; Kim, K. B.; Chen, Z. W.; Yeon, S. H. J. Mater. Chem. A 2015, 3, 9461.
[70] Yim, T.; Han, S. H.; Park, N. H.; Park, M. S.; Lee, J. H.; Shin, J.; Choi, J. W.; Jung, Y.; Jo, Y. N.; Yu, J. S.; Kim, K. J. Adv. Funct. Mater. 2016, 26, 7817.
[71] Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Science 2014, 343, 752.
[72] Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Science 2012, 335, 442.
[73] Huang, J. Q.; Zhuang, T. Z.; Zhang, Q.; Peng, H. J.; Chen, C. M.; Wei, F. ACS Nano 2015, 9, 3002.
[74] Lin, W.; Chen, Y.; Li, P.; He, J.; Zhao, Y.; Wang, Z.; Liu, J.; Qi, F.; Zheng, B.; Zhou, J.; Xu, C.; Fu, F. J. Electrochem. Soc. 2015, 162, A1624.
[75] Wu, F.; Qian, J.; Chen, R.; Ye, Y.; Sun, Z.; Xing, Y.; Li, L. J. Mater. Chem. A 2016, 4, 17033.
[76] Sun, J.; Sun, Y.; Pasta, M.; Zhou, G.; Li, Y.; Liu, W.; Xiong, F.; Cui, Y. Adv. Mater. 2016, 28, 9797.
[77] Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. Adv. Mater. 2014, 26, 625.
[78] Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Nature Energy 2016, 1, 16094.
[79] Bai, S.; Zhu, K.; Wu, S.; Wang, Y.; Yi, J.; Ishida, M.; Zhou, H. J. Mater. Chem. A 2016, 4, 16812.
[80] Li, C. Y.; Ward, A. L.; Doris, S. E.; Pascal, T. A.; Prendergast, D.; Helms, B. A. Nano Lett. 2015, 15, 5724.
[81] Li, W.; Hicks-Garner, J.; Wang, J.; Liu, J.; Gross, A. F.; Sherman, E.; Graetz, J.; Vajo, J. J.; Liu, P. Chem. Mater. 2014, 26, 3403.
[82] Yu, X. W.; Bi, Z. H.; Zhao, F.; Manthiram, A. ACS Appl. Mater. Interfaces 2015, 7, 16625.
[83] Zhang, Z. Y.; Lai, Y. Q.; Zhang, Z. A.; Zhang, K.; Li, J. E. Electrochim. Acta 2014, 129, 55.
[84] Chung, S. H.; Han, P.; Singhal, R.; Kalra, V.; Manthiram, A. Adv. Energy Mater. 2015, 5, 1500738.
[85] Wei, H.; Ma, J.; Li, B. A.; Zuo, Y. X.; Xia, D. G. ACS Appl. Mater. Interfaces 2014, 6, 20276.
[86] Wang, Z.; Zhang, J.; Yang, Y.; Yue, X.; Hao, X.; Sun, W.; Rooney, D.; Sun, K. J. Power Sources 2016, 329, 305.
[87] Liu, N.; Huang, B.; Wang, W.; Shao, H.; Li, C.; Zhang, H.; Wang, A.; Yuan, K.; Huang, Y. ACS Appl. Mater. Interfaces 2016, 8, 16101.
[88] Shao, H.; Huang, B.; Liu, N.; Wang, W.; Zhang, H.; Wang, A.; Wang, F.; Huang, Y. J. Mater. Chem. A 2016, 4, 16627.
[89] Lapornik, V.; Tusar, N. N.; Ristic, A.; Chellappan, R. K.; Foix, D.; Dedryvere, R.; Gaberscek, M.; Dominko, R. J. Power Sources 2015, 274, 1239.
[90] Nair, J. R.; Bella, F.; Angulakshmi, N.; Stephan, A. M.; Gerbaldi, C. Energy Storage Mater. 2016, 3, 69.
[91] Qian, X.; Jin, L.; Zhao, D.; Yang, X.; Wang, S.; Shen, X.; Rao, D.; Yao, S.; Zhou, Y.; Xi, X. Electrochim. Acta 2016, 192, 346.
[92] Wang, H. Q.; Zhang, W. C.; Liu, H. K.; Guo, Z. P. Angew. Chem., Int. Ed. 2016, 55, 3992.
[93] Zhang, Y.; Miao, L.; Ning, J.; Xiao, Z.; Hao, L.; Wang, B.; Zhi, L. 2D Mater. 2015, 2, 024013.
[94] Cheng, X.; Wang, W.; Wang, A.; Yuan, K.; Jin, Z.; Yang, Y.; Zhao, X. RSC Adv. 2016, 6, 89972.
[95] Hou, T. Z.; Peng, H. J.; Huang, J. Q.; Zhang, Q.; Li, B. 2D Mater. 2015, 2, 014011.
[96] Chang, C. H.; Chung, S. H.; Manthiram, A. J. Mater. Chem. A 2015, 3, 18829.
[97] Zhu, J.; Chen, C.; Lu, Y.; Zang, J.; Jiang, M.; Kim, D.; Zhang, X. Carbon 2016, 101, 272.
[98] Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Small 2016, 12, 3283.
[99] Fan, C. Y.; Yuan, H. Y.; Li, H. H.; Wang, H. F.; Li, W. L.; Sun, H. Z.; Wu, X. L.; Zhang, J. P. ACS Appl. Mater. Interfaces 2016, 8, 16108.
[100] Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Angew. Chem., Int. Ed. 2015, 54, 4325.
[101] Peng, H. J.; Zhang, Q. Angew. Chem., Int. Ed. 2015, 54, 11018.
[102] Zhou, X.; Liao, Q.; Tang, J.; Bai, T.; Chen, F.; Yang, J. J. Electroanal. Chem. 2016, 768, 55.
[103] Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. J. Power Sources 2016, 303, 317.
[104] Lin, C.; Zhang, W.; Wang, L.; Wang, Z.; Zhao, W.; Duan, W.; Zhao, Z.; Liu, B.; Jin, J. J. Mater. Chem. A 2016, 4, 5993.
[105] Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Angew. Chem., Int. Ed. 2016, 55, 12990.
[106] Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. Adv. Mater. 2015, 27, 2891.
[107] Song, J.; Su, D.; Xie, X.; Guo, X.; Bao, W.; Shao, G.; Wang, G. ACS Appl. Mater. Interfaces 2016, 8, 29427.
[108] Chung, S. H.; Chang, C. H.; Manthiram, A. Small 2016, 12, 939.
[109] Chung, S. H.; Manthiram, A. J. Phys. Chem. Lett. 2014, 5, 1978.
[110] Chung, S. H.; Manthiram, A. Adv. Mater. 2014, 26, 7352.
[111] Chung, S. H.; Manthiram, A. Adv. Funct. Mater. 2014, 24, 5299.
[112] Zhang, Z.; Lai, Y.; Zhang, Z.; Li, J. Solid State Ionics 2015, 278, 166.
[113] Wang, Q.; Wen, Z.; Yang, J.; Jin, J.; Huang, X.; Wu, X.; Han, J. J. Power Sources 2016, 306, 347.
[114] Zhu, J.; Ge, Y.; Kim, D.; Lu, Y.; Chen, C.; Jiang, M.; Zhang, X. Nano Energy 2016, 20, 176.
[115] Zhao, D.; Qian, X.; Jin, L.; Yang, X.; Wang, S.; Shen, X.; Yao, S.; Rao, D.; Zhou, Y.; Xi, X. RSC Adv. 2016, 6, 13680.
[116] Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. Adv. Funct. Mater. 2015, 25, 5285.
[117] Zhang, Z.; Wang, G. C.; Lai, Y. Q.; Li, J.; Zhang, Z. Y.; Chen, W. J. Power Sources 2015, 300, 157.
[118] Wang, G. C.; Lai, Y. Q.; Zhang, Z. A.; Li, J.; Zhang, Z. Y. J. Mater. Chem. A 2015, 3, 7139.
[119] Luo, L.; Chung, S. H.; Manthiram, A. J. Mater. Chem. A 2016, 4, 16805.
[120] Chen, Y. L.; Liu, N. Q.; Shao, H. Y.; Wang, W. K.; Gao, M. Y.; Li, C. M.; Zhang, H.; Wang, A. B.; Huang, Y. Q. J. Mater. Chem. A 2015, 3, 15235.
[121] Zhou, G.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S.; Li, F.; Cheng, H. M. Adv. Mater. 2015, 27, 641.
[122] Wang, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Chem. Commun. 2015, 51, 6996.
[123] Zhu, J.; Yanilmaz, M.; Fu, K.; Chen, C.; Lu, Y.; Ge, Y.; Kim, D.; Zhang, X. J. Membrane Sci. 2016, 504, 89.
[124] Li, Z.; Jiang, Q. Q.; Ma, Z. L.; Liu, Q. H.; Wu, Z. J.; Wang, S. Y. RSC Adv. 2015, 5, 79473.
[125] Li, G. C.; Jing, H. K.; Su, Z.; Lai, C.; Chen, L.; Yuan, C. C.; Li, H. H.; Liu, L. J. Mater. Chem. A 2015, 3, 11014.
[126] Zhang, Z.; Zhang, Z.; Li, J.; Lai, Y. J. Solid State Electr. 2015, 19, 1709.
[127] Ma, G.; Huang, F.; Wen, Z.; Wang, Q.; Hong, X.; Jin, J.; Wu, X. J.Mater. Chem. A 2016, 4, 16968.
[128] Yao, H.; Yan, K.; Li, W.; Zheng, G.; Kong, D.; Seh, Z. W.; Narasimhan, V. K.; Liang, Z.; Cui, Y. Energy Environ. Sci. 2014, 7, 3381.
[129] Peng, H. J.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. Adv. Sci. 2016, 3, 1500268.
[130] Peng, H. J.; Zhang, Z. W.; Huang, J. Q.; Zhang, G.; Xie, J.; Xu, W. T.; Shi, J. L.; Chen, X.; Cheng, X. B.; Zhang, Q. Adv. Mater. 2016, 28, 9551.
[131] Wu, F.; Ye, Y.; Chen, R.; Qian, J.; Zhao, T.; Li, L.; Li, W. Nano Lett. 2015, 15, 7431.
[132] Kim, J. S.; Hwang, T. H.; Kim, B. G.; Min, J.; Choi, J. W. Adv. Funct. Mater. 2014, 24, 5359.
[133] Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Adv. Mater. 2016, 28, 2888.

文章导航

/