研究论文

具有三维导电网络结构的锡纳米颗粒/石墨烯纳米片复合电极材料的储镁性能研究

  • 张长欢 ,
  • 李念武 ,
  • 姚胡蓉 ,
  • 刘琳 ,
  • 殷雅侠 ,
  • 郭玉国
展开
  • a 中国科学院化学研究所 中国科学院分子纳米结构与纳米技术重点实验室 北京 100190;
    b 中国科学院大学 化学与化工学院 北京 100049

收稿日期: 2016-10-13

  修回日期: 2016-12-19

  网络出版日期: 2016-12-20

基金资助

项目受国家自然科学基金(Nos.51225204,21303222,21127901)和中国科学院战略性先导科技专项(XDA09010100)资助.

Synthesis of Sn Nanoparticles/Graphene Nanosheet Hybrid Electrode Material with Three-Dimensional Conducting Network for Magnesium Storage

  • Zhang Changhuan ,
  • Li Nianwu ,
  • Yao Hurong ,
  • Liu Lin ,
  • Yin Yaxia ,
  • Guo Yuguo
Expand
  • a CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences(CAS), Beijing 100190, China;
    b School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2016-10-13

  Revised date: 2016-12-19

  Online published: 2016-12-20

Supported by

Project supported by the National Natural Science Foundation of China (Grant Nos. 51225204, 21303222, and 21127901) and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA09010100).

摘要

镁二次电池具有安全性高、价格低廉等优点,是一种具有潜在应用前景的高能量密度电池体系.目前,镁二次电池的研究重点之一是寻找合适的电极材料.最近,我们通过水热和热处理相结合的方法成功制备了具有三维导电网络结构的锡纳米颗粒/石墨烯纳米片复合电极材料.研究发现,在石墨烯的三维导电网络片层上,均匀分布了粒径小于100 nm的锡纳米颗粒.将锡纳米颗粒/石墨烯纳米片复合材料作为镁二次电池电极材料,当电流密度为15 mA·g-1和300 mA·g-1时,首次放电容量分别达到了545.4 mAh·g-1和238.8 mAh·g-1,经过150圈后,容量保持率达到了93%,库伦效率为99%,表现出了较高的电化学活性.研究还发现,镁离子嵌入复合材料中形成镁锡合金,当镁离子脱出后,再次形成锡纳米颗粒/石墨烯纳米片复合电极材料,镁离子的脱出和嵌入具有很高的可逆性.这对未来研究设计高性能镁离子电极材料具有十分重要的意义.

本文引用格式

张长欢 , 李念武 , 姚胡蓉 , 刘琳 , 殷雅侠 , 郭玉国 . 具有三维导电网络结构的锡纳米颗粒/石墨烯纳米片复合电极材料的储镁性能研究[J]. 化学学报, 2017 , 75(2) : 206 -211 . DOI: 10.6023/A16100542

Abstract

Rechargeable magnesium (Mg) batteries have attracted research attention as one promising alternative for energy storage because of abundant raw materials. However, the strong electrostatic interaction between bivalent Mg-ions and host lattices often cause sluggish solid state diffusion of Mg-ion within the local crystal structure and consequently prevent reversible insertion/extraction of Mg-ion. Thus much more effort has been paid to develop suitable electrode materials with Mg-ion storage capability. This paper reports the synthesis of Sn nanoparticles/reduced-graphene-oxide nanosheet hybrid nanocomposite (Sn/rGO), by simple hydrothermal method and subsequent thermal treatment. Transmission electron microscopy (TEM) clearly shows that in the as-synthesized Sn/rGO powder Sn nanoparticles are well crystallized, and X-ray diffraction (XRD) pattern was consistent well with tetragonal Sn. Thermogravimetric analysis (TG) suggested that the mass percentage of Sn is ca. 82.3 wt% in the Sn/rGO nanocomposite, very close to the design ratio of ca. 83.4 wt%. As Mg-ion battery anode, the Sn/rGO electrode material exhibit a high initial discharge specific capacity (545.4 mAh·g-1 at 15 mA·g-1), good reversible ability and rate performance. The impressive electrochemical property could be attributed to the unique structure of Sn/rGO, in which the three-dimensional (3D) conducting network of rGO can effectively prevent the aggregation of Sn nanoparticles and alleviate the serious volume variation of Sn during repeated discharging/charging process, as well as facilitate the fast access of electrons and Mg-ion to improve kinetics for Mg-ion insertion/extraction. Ex situ XRD and SEM characterization were performed to investigate the electrochemical evolution of Sn/rGO electrode at different discharging/charging states. It is found that upon magnesiation crystalline Mg2Sn appears and subsequently disappears during de-magnesiation process, which indicates the good electrochemical activity of Sn nanoparticles in Sn/rGO hybrid nanocomposite for magnesium storage. Our result will open new avenue to develop high-efficient magnesium storage material for rechargeable Mg batteries.

参考文献

[1] Ye, Y.; Zhu, J.; Yao, Y.; Wang, Y.; Wu, P.; Tang, Y.; Zhou, Y.; Lu, T. Acta Chim. Sinica 2015, 73, 151. (叶亚, 朱婧怡, 姚依男, 王雨果, 吴平, 唐亚文, 周益明, 陆天虹, 化学学报, 2015, 73, 151.)
[2] Lyu, Z.; Feng, R.; Zhao, J.; Fan, H.; Xu, D.; Wu, Q.; Yang, L.; Chen, Q.; Wang, X.; Hu, Z. Acta Chim. Sinica 2015, 73, 1013. (吕之阳, 冯瑞, 赵进, 范豪, 徐丹, 吴强, 杨立军, 陈强, 王喜章, 胡征, 化学学报, 2015, 73, 1013.)
[3] Qiu, Z. P.; Zhang, Y. J.; Xia, S. B.; Dong, P. Acta Chim. Sinica 2015, 73, 992. (邱振平, 张英杰, 夏书标, 董鹏, 化学学报, 2015, 73, 992.)
[4] Luo, F.; Zheng, J. Y.; Chu, G.; Liu, B. N.; Zhang, S. L.; Li, H.; Chen, L. Q. Acta Chim. Sinica 2015, 73, 808. (罗飞, 郑杰允, 褚赓, 刘柏男, 张素林, 李泓, 陈立泉, 化学学报, 2015, 73, 808.)
[5] Yan, Y.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Sci. China-Chem. 2014, 57, 1564.
[6] Matsui, M. J. Power Sources 2011, 196, 7048.
[7] Ling, C.; Banerjee, D.; Matsui, M. Electrochim. Acta 2012, 76, 270.
[8] Saha, P.; Datta, M. K.; Velikokhatnyi, O. I.; Manivannan, A.; Alman, D.; Kumta, P. N. Prog. Mater. Sci. 2014, 66, 1.
[9] Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Energ. Environ. Sci. 2013, 6, 2265.
[10] Shterenberg, I.; Salama, M.; Gofer, Y.; Levi, E.; Aurbach, D. Mrs. Bull. 2014, 39, 453.
[11] Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Nature 2000, 407, 724.
[12] Aurbach, D.; Weissman, I.; Gofer, Y.; Levi, E. Chem. Rec. 2003, 3, 61.
[13] Chusid, O.; Gofer, Y.; Gizbar, H.; Vestfrid, Y.; Levi, E.; Aurbach, D.; Riech, I. Adv. Mater. 2003, 15, 627.
[14] Levi, E.; Gofer, Y.; Aurbach, D. Chem. Mater. 2010, 22, 860.
[15] Imamura, D.; Miyayama, M.; Hibino, M.; Kudo, T. J. Electrochem. Soc. 2003, 150, A753.
[16] Tao, Z. L.; Xu, L. N.; Gou, X. L.; Chen, J.; Yuan, H. T. Chem. Commun. 2004, 18, 2080.
[17] Singh, N.; Arthur, T. S.; Ling, C.; Matsui, M.; Mizuno, F. Chem. Commun. 2013, 49, 149.
[18] Shao, Y.; Gu, M.; Li, X.; Nie, Z.; Zuo, P.; Li, G.; Liu, T.; Xiao, J.; Cheng, Y.; Wang, C.; Zhang, J. G.; Liu, J. Nano Lett. 2014, 14, 255.
[19] Wu, N.; Lyu, Y. C.; Xiao, R. J.; Yu, X.; Yin, Y. X.; Yang, X. Q.; Li, H.; Gu, L.; Guo, Y. G. Npg Asia Mater. 2014, 6, e120.
[20] Wu, N.; Yang, Z. Z.; Yao, H. R.; Yin, Y. X.; Gu, L.; Guo, Y. G. Angew. Chem. Int. Ed. 2015, 54, 5757.
[21] He, D.; Wu, D.; Gao, J.; Wu, X.; Zeng, X.; Ding, W. J. Power Sources 2015, 294, 643.
[22] Kim, C.; Phillips, P. J.; Key, B.; Yi, T.; Nordlund, D.; Yu, Y.-S.; Bayliss, R. D.; Han, S.-D.; He, M.; Zhang, Z.; Burrell, A. K.; Klie, R. F.; Cabana, J. Adv. Mater. 2015, 27, 3377.
[23] Liang, Y.; Yoo, H. D.; Li, Y.; Shuai, J.; Calderon, H. A.; Hernandez, F. C. R.; Grabow, L. C.; Yao, Y. Nano Lett. 2015, 15, 2194.
[24] Murgia, F.; Stievano, L.; Monconduit, L.; Berthelot, R. J. Mater. Chem. A 2015, 3, 16478.
[25] Su, S.; Huang, Z.; Nuli, Y.; Tuerxun, F.; Yang, J.; Wang, J. Chem. Commun. 2015, 51, 2641.
[26] Huang, J.; Poyraz, A. S.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C. Chem. Commun. 2016, 52, 4088.
[27] Malyi, O. I.; Tan, T. L.; Manzhos, S. J. Power Sources 2013, 233, 341.
[28] Xin, S.; Guo, Y. G.; Wan, L. J. Acc. Chem. Res. 2012, 45, 1759.
[29] Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
[30] Mizrahi, O.; Amir, N.; Pollak, E.; Chusid, O.; Marks, V.; Gottlieb, H.; Larush, L.; Zinigrad, E.; Aurbach, D. J. Electrochem. Soc. 2008, 155, A103.

文章导航

/