二维金属或共价有机骨架材料的制备及其化学与生物传感应用
收稿日期: 2016-11-09
网络出版日期: 2017-01-18
基金资助
项目受国家自然科学基金(Nos.21675092,41476083,21275084,51525903)、国家863计划(No.2015AA034404)和黄岛区海洋科技专项(No.2014-4-1)资助.
Controllable Preparation of Two Dimensional Metal- or Covalent Organic Frameworks for Chemical Sensing and Biosensing
Received date: 2016-11-09
Online published: 2017-01-18
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21675092, 41476083, 21275084, 51525903), 863 program (No. 2015AA034404) and Marine Science and Technology Projects of Huangdao District (No. 2014-4-1).
随着人们对以石墨烯为代表的二维(2D)纳米材料不断深入与扩展研究,近些年来,以2D金属有机骨架(metal-organic frameworks,MOFs)和共价有机骨架(covalent organic frameworks,COFs)为代表的2D骨架材料引起了人们浓厚的研究兴趣和广泛关注.与其它的中孔或微孔的纳米材料相比,这些有机骨架材料提供了均一的纳米尺寸的孔,并且相较于石墨烯,2D有机骨架材料可以预期性地设计和组装功能化的结构单元,如羧基、氨基、羟基等基团可以通过多样的化学反应人为可控地接枝到骨架上,这些优点有望使2D有机骨架材料成为新一代提高传感界面灵敏度和稳定性的功能材料.本篇综述分别对2D MOFs和COFs进行简单的概述,总结目前以“自下而上”和“自上而下”两种制备2D MOFs和COFs纳米材料的方法并对其做出简单的点评,介绍(2D)MOFs和COFs材料在化学传感和生物传感方面的应用,讨论了2D MOFs和COFs在传感应用中的潜质和关键性问题,并对未来2D MOFs和COFs的应用前景做出了展望.
杨涛 , 崔亚男 , 陈怀银 , 李伟华 . 二维金属或共价有机骨架材料的制备及其化学与生物传感应用[J]. 化学学报, 2017 , 75(4) : 339 -350 . DOI: 10.6023/A16110592
In recent years, with the continuously deep and expanded researches of two-dimensional (2D) nanomaterials rep-resented by graphene, 2D framework materials represented by 2D metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have attracted great research interests and extensive attention. Compared with other mesoporous or mi-croporous nanomaterials, these organic framework materials provide uniformly nano-sized pores. And as compared to graphene, 2D organic framework materials can be expected to design and assemble the functionalized building units. For example, carboxyl group, amino group, hydroxyl group, etc. can be grafted onto the frameworks through various chemical reactions. These advantages are hopeful to make 2D organic framework materials a new generation of functional materials to improve the sensitivity and stability of the sensing interfaces. This review simply summarized 2D MOFs and COFs respectively, and generalized the current methods for preparing 2D MOFs and COFs nanomaterials based on "bottom-up" and "top-down" strategies and made simple comments. In addition, the applications of (2D) MOFs and COFs materials in chemical sensing and biosensing fields were introduced, and the potential and key problems of 2D MOFs and COFs in sensing applications were also discussed. And at last, this review gives some outlook for the future applications of 2D MOFs and COFs nanomaterials.
[1] Xu, M.; Liang, T.; Shi, M.; Chen, H. Chem. Rev. 2013, 113, 3766.
[2] He, X.; Liu, F.; Zeng, Q.; Liu, Z. Acta Chim. Sinica 2015, 73, 924. (何学侠, 刘富才, 曾庆圣, 刘政, 化学学报, 2015, 73, 924.)
[3] Wee, A. T. S. ACS Nano 2013, 7, 5649.
[4] Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Nat. Mater. 2015, 14, 48.
[5] Peng, Y.; Li, Y.; Ban, Y.; Jin, H.; Jiao, W.; Liu, X.; Yang, W. Science 2014, 346, 1356.
[6] Liu, X. H.; Guan, C. Z.; Wang, D.; Wan, L. J. Adv. Mater. 2014, 26, 6912.
[7] Xu, L.; Zhou, X.; Yu, Y.; Tian, W. Q.; Ma, J.; Lei, S. ACS Nano 2013, 7, 8066.
[8] Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105.
[9] Zhou, H.-C. J.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415.
[10] Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
[11] Dogru, M.; Bein, T. Chem. Commun. 2014, 50, 5531.
[12] Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629.
[13] Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213.
[14] Huang, G.; Chen, Y.; Jiang, H. Acta Chim. Sinica 2016, 74, 113. (黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.)
[15] Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703.
[16] Ding, S.-B.; Wang, W.; Qiu, L.-G.; Yuan, Y.-P.; Peng, F.-M.; Jiang, X.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. Mater. Lett. 2011, 65, 1385.
[17] Wang, Y.; Cheng, L.; Liu, Z.-Y.; Wang, X.-G.; Ding, B.; Yin, L.; Zhou, B.-B.; Li, M.-S.; Wang, J.-X.; Zhao, X.-J. Chem.-Eur. J. 2015, 21, 14171.
[18] Rachuri, Y.; Parmar, B.; Bisht, K. K.; Suresh, E. Dalton Trans. 2016, 45, 7881.
[19] Khatua, S.; Goswami, S.; Biswas, S.; Tomar, K.; Jena, H. S.; Konar, S. Chem. Mater. 2015, 27, 5349.
[20] Ma, J.-P.; Yu, Y.; Dong, Y.-B. Chem. Commun. 2012, 48, 2946.
[21] Zhao, H.-Q.; Qiu, G.-H.; Liang, Z.; Li, M.-M.; Sun, B.; Qin, L.; Yang, S.-P.; Chen, W.-H.; Chen, J.-X. Anal. Chim. Acta 2016, 922, 55.
[22] Ye, T.; Liu, Y.; Luo, M.; Xiang, X.; Ji, X.; Zhou, G.; He, Z. Analyst 2014, 139, 1721.
[23] Zhu, X.; Zheng, H.; Wei, X.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G. Chem. Commun. 2013, 49, 1276.
[24] Huang, P.; Mao, J.; Yang, L.; Yu, P.; Mao, L. Chem.-Eur. J. 2011, 17, 11390.
[25] Usov, P. M.; Fabian, C.; D'Alessandro, D. M. Chem. Commun. 2012, 48, 3945.
[26] Fernandes, D. M.; Barbosa, A. D.; Pires, J.; Balula, S. S.; Cunha-Silva, L.; Freire, C. ACS Appl. Mater. Interfaces 2013, 5, 13382.
[27] Wu, X. Q.; Ma, J. G.; Li, H.; Chen, D. M.; Gu, W.; Yang, G. M.; Cheng, P. Chem. Commun. 2015, 51, 9161.
[28] Khan, I. A.; Badshah, A.; Nadeem, M. A.; Haider, N.; Nadeem, M. A. Int. J. Hydrogen Energy 2014, 39, 19609.
[29] Ling, P.; Lei, J.; Zhang, L.; Ju, H. Anal. Chem. 2015, 87, 3957.
[30] Ling, P.; Lei, J.; Ju, H. Biosens. Bioelectron. 2015, 71, 373.
[31] Cui, L.; Wu, J.; Li, J.; Ju, H. Anal. Chem. 2015, 87, 10635.
[32] Shen, W. J.; Zhuo, Y.; Chai, Y. Q.; Yuan, R. Anal. Chem. 2015, 87, 11345.
[33] Yang, T.; Kong, Q.; Li, Q.; Wang, X.; Chen, L.; Jiao, K. ACS Appl. Mater. Interfaces 2014, 6, 11032.
[34] Yang, T.; Chen, H.; Ge, T.; Wang, J.; Li, W.; Jiao, K. Talanta 2015, 144, 1324.
[35] Yang, T.; Chen, H.; Yang, R.; Jiang, Y.; Li, W.; Jiao, K. Microchim. Acta 2015, 182, 2623.
[36] Gallego, A.; Hermosa, C.; Castillo, O.; Berlanga, I.; Gómez-García, C. J.; Mateo-Martí, E.; Martínez, J. I.; Flores, F.; Gómez-Navarro, C.; Gómez-Herrero, J.; Delgado, S.; Delgado, S.; Zamora, F. Adv. Mater. 2013, 25, 2141.
[37] Li, P. Z.; Maeda, Y.; Xu, Q. Chem. Commun. 2011, 47, 8436.
[38] Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Nat. Mater. 2010, 9, 565.
[39] Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. J. Am. Chem. Soc. 2011, 133, 5640.
[40] Makiura, R.; Konovalov, O. Sci. Rep. 2013, 3, 2506.
[41] Zhao, M.; Wang, Y.; Ma, Q.; Huang, Y.; Zhang, X.; Ping, J.; Zhang, Z.; Lu, Q.; Yu, Y.; Xu, H.; Zhao, Y.; Zhang, H. Adv. Mater. 2015, 27, 7372.
[42] Li, S.; Huang, X.; Zhang, H. Acta Chim. Sinica 2015, 73, 913. (李绍周, 黄晓, 张华, 化学学报, 2015, 73, 913.).
[43] Zhang, M.; Feng, G.; Song, Z.; Zhou, Y.-P.; Chao, H.-Y.; Yuan, D.; Tan, T. T. Y.; Guo, Z.; Hu, Z.; Tang, B. Z.; Liu, B.; Zhao, D. J. Am. Chem. Soc. 2014, 136, 7241.
[44] Zhang, S. R.; Du, D. Y.; Qin, J. S.; Bao, S. J.; Li, S. L.; He, W. W.; Lan, Y. Q.; Shen, P.; Su, Z. M. Chem. Eur. J. 2014, 20, 3589.
[45] Hu, X. L.; Liu, F. H.; Qin, C.; Shao, K. Z.; Su, Z. M. Dalton Trans. 2015, 44, 7822.
[46] Xu, H.; Gao, J.; Qian, X.; Wang, J.; He, H.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G. J. Mater. Chem. A 2016, 4, 10900.
[47] Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dinc?, M. Angew. Chem. Int. Ed. 2015, 54, 4349.
[48] Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dinc?, M. J. Am. Chem. Soc. 2015, 137, 13780.
[49] Wang, Y.; Zhao, M.; Ping, J.; Chen, B.; Cao, X.; Huang, Y.; Tan, C.; Ma, Q.; Wu, S.; Yu, Y.; Lu, Q.; Chen, J.; Zhao, W.; Ying, Y.; Zhang, H. Adv. Mater. 2016, 28, 4149.
[50] Yang, T.; Meng, L.; Chen, H.; Luo, S.; Li, W.; Jiao, K. Adv. Mater. Interfaces 2016, 1500700.
[51] Yang, T.; Chen, M.; Kong, Q.; Luo, X.; Jiao, K. Biosens. Bioelectron. 2017, 89, 538.
[52] Côté, A. P.; Benin, A. I.; Ockwig, N. W.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. Science 2005, 310, 1166.
[53] Hunt, J. R.; Doonan, C. J.; LeVangie, J. D.; Côté, A. P; Yaghi, O. M. J. Am. Chem. Soc. 2008, 130, 11872.
[54] Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2012, 134, 19524.
[55] Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.
[56] Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135, 5328.
[57] Zhou, B.; Chen, L. Acta Chim. Sinica 2015, 73, 487. (周宝龙, 陈龙, 化学学报, 2015, 73, 487.)
[58] Liu, X.; Guo, J.; Feng, X.; Dong, J. Science Foundation in China 2014, 28, 330. (刘晓明, 郭佳, 冯霄, 董建华, 中国科学基金, 2014, 28, 330.)
[59] Zhang, W.; Qiu, L. G.; Yuan, Y. P.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. J. Hazard. Mater. 2012, 221, 147.
[60] Kaleeswaran, D.; Vishnoi, P.; Murugavel, R. J. Mater. Chem. C 2015, 3, 7159.
[61] Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D. J. Am. Chem. Soc. 2013, 135, 17310.
[62] Cai, S. L.; Zhang, W. G.; Zuckermann, R. N.; Li, Z. T.; Zhao, X.; Liu, Y. Adv. Mater. 2015, 27, 5762.
[63] Xiang, Z.; Cao, D.; Dai, L. Polym. Chem. 2015, 6, 1896.
[64] Berlanga, I.; Ruiz-González, M. L.; González-Calbet, J. M.; Fierro, J. L. G.; Mas-Ballesté, R.; Zamora, F. Small 2011, 7, 1207.
[65] Berlanga, I.; Mas-Ballesté, R.; Zamora, F. Chem. Commun. 2012, 48, 7976.
[66] Bunck, D. N.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 14952.
[67] Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine,T.; Verma, S.; Banerjee, R. Chem. Sci. 2015, 6, 3931.
[68] Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135, 17853.
[69] Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Science 2011, 332, 228.
[70] Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. J. Am. Chem. Soc. 2013, 135, 10470.
[71] Ding, H.; Li, Y.; Hu, H.; Sun, Y.; Wang, J.; Wang, C.; Wang, C.; Zhang, G.; Wang, B.; Xu, W.; Zhang, D. Chem. Eur. J. 2014, 20, 14614.
[72] Lin, S.; Diercks, C. S.; Zhang, Y.-B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Science 2015, 349, 1208.
[73] DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruña, H. D.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 16821.
[74] DeBlase, C. R.; Hernandez-Burgos, K.; Silberstein, K. E.; Ro-dríguez-Calero, G. G.; Bisbey, R. P.; Abruna, H. D.; Dichtel, W. R. ACS Nano 2015, 9, 3178.
[75] Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R.; Jiang, D. Sci. Rep. 2015, 5, 8225.
[76] Xu, L.; Zhou, X.; Tian, W. Q.; Gao, T.; Zhang, Y. F.; Lei, S.; Liu, Z. F. Angew. Chem. Int. Ed. 2014, 53, 9564.
[77] Zha, Z.; Xu, L.; Wang, Z.; Li, X.; Pan, Q.; Hu, P.; Lei, S. ACS Appl. Mater. Interfaces 2015, 7, 17837.
[78] Wang, P.; Kang, M.; Sun, S.; Liu, Q.; Zhang, Z.; Fang, S. Chin. J. Chem. 2014, 32, 838.
/
〈 |
|
〉 |