研究论文

Ru-Zn/ZrO2催化剂在苯部分加氢反应中的孔径效应

  • 周功兵 ,
  • 王浩 ,
  • 裴燕 ,
  • 乔明华 ,
  • 孙斌 ,
  • 宗保宁
展开
  • a 重庆师范大学化学学院 绿色合成与应用重点实验室 重庆 401331;
    b 复旦大学化学系 上海市分子催化和功能材料重点实验室 上海 200433;
    c 中国石化石油化工科学研究院 催化材料与反应工程国家重点实验室 北京 100083

收稿日期: 2016-10-28

  修回日期: 2017-01-20

  网络出版日期: 2017-02-13

基金资助

项目受国家重点基础研究发展规划项目(No.2012CB224804),国家重点研发专项项目(No.2016YFB0301602),国家自然科学基金(No.21373055),上海市科委科技基金(No.08DZ2270500),北京高能所同步辐射实验室开放课题,重庆市教委科学技术研究项目(No.KJ1500305)及重庆市科委基础与前沿研究计划项目(No.cstc2016jcyjA0392)资助.

Pore Size Effect of Ru-Zn/ZrO2 Catalyst on Partial Hydrogenation of Benzene to Cyclohexene

  • Zhou Gongbing ,
  • Wang Hao ,
  • Pei Yan ,
  • Qiao Minghua ,
  • Sun Bin ,
  • Zong Baoning
Expand
  • a Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331;
    b Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433;
    c State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083

Received date: 2016-10-28

  Revised date: 2017-01-20

  Online published: 2017-02-13

Supported by

Project supported by the National Key Research Program of China (No. 2012CB224804), the National Key Research and Development Project of China (No. 2016YFB0301602), the National Natural Science Foundation of China (No. 21373055), Science and Technology Commission of Shanghai Municipality (No. 08DZ2270500), Beijing Synchrotron Radiation Facility, the Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJ1500305), and the Science & Technology Commission of Chongqing Municipality (No. cstc2016jcyjA0392).

摘要

采用沉淀法和溶剂热法合成了三种具有相同晶型但不同孔径的四方ZrO2t-ZrO2),以此为载体,采用沉积沉淀-硫酸锌溶液中还原的方法制备了Ru-Zn/ZrO2催化剂,考察了Ru-Zn/ZrO2催化剂的孔径对苯部分加氢性能的影响.采用粉末X射线衍射(XRD)、N2物理吸附、电感耦合等离子体原子发射光谱(ICP-AES)、CO化学吸附、X射线光电子能谱(XPS)、X射线吸收近边结构(XANES)、X射线激发俄歇电子能谱(XAES)、H2程序升温还原(H2-TPR)和透射电子显微镜(TEM)等手段对载体和催化剂进行了系统的表征.研究表明,在苯部分加氢反应中,Ru-Zn/ZrO2催化剂的孔径对环己烯的选择性有显著影响.随催化剂孔径的增大,苯的转换频率(TOF)基本不变,环己烯初始选择性(S0)则逐渐升高,孔径为11.7 nm的ZrO2(ZrO2(11.7))负载的Ru-Zn/ZrO2(11.7)催化剂的S0及得率最高,分别可达88%和54%.结合催化剂的表征和加氢结果,讨论了孔径影响苯部分加氢活性和选择性的原因.

本文引用格式

周功兵 , 王浩 , 裴燕 , 乔明华 , 孙斌 , 宗保宁 . Ru-Zn/ZrO2催化剂在苯部分加氢反应中的孔径效应[J]. 化学学报, 2017 , 75(3) : 321 -328 . DOI: 10.6023/A16100569

Abstract

Partial hydrogenation of benzene to cyclohexene is an important industrial process and features exceptional superiority to processes such as dehydration of cyclohexanol, dehydrogenation of cyclohexane, and the Birch reduction in terms of inexpensive feedstock, succinct reaction route and consequently, improved operational simplicity. In this work, the pore size effect on the partial hydrogenation of benzene to cyclohexene over the Ru-Zn/ZrO2 catalysts was studied for the first time. Three ZrO2 supports with the same tetragonal crystallographic form (t-ZrO2) but different pore sizes were synthesized by the precipitation and the solvothermal methods. Using these ZrO2 samples, the Ru-Zn/ZrO2 catalysts were prepared by the deposition-precipitation method followed by reduction in ZnSO4·7H2O aqueous solution. The supports and catalysts were characterized by powder X-ray diffraction (XRD), N2 physisorption, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), CO chemisorption, X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge structure (XANES), temperature-programmed reduction of H2 (H2-TPR), and transmission electron microscopy (TEM). It is identified that the Ru nanoparticles (NPs) on these catalysts had similar size and chemical state. In the partial hydrogenation of benzene to cyclohexene, a pronounced pore size effect of the catalyst was identified. With the increase in the pore size, while the turnover frequency (TOF) of benzene was essentially unchanged, the initial selectivity (S0) to cyclohexene increased steadily. The Ru-Zn/ZrO2(11.7) catalyst with the ZrO2 support having the pore size of 11.7 nm exhibited the highest S0 (88%) and yield (54%) of cyclohexene. On the basis of the characterization results, the similarity in the TOFs of benzene on the Ru-Zn/ZrO2 catalysts with different pore sizes is associated with the identical sizes of the Ru NPs. On the other hand, we tentatively propose that the ZrO2 support with large pore size is beneficial for the out-diffusion of the cyclohexene nano-droplets formed in the pore channels, thus avoiding consecutive hydrogenation to cyclohexane and improving the S0.

参考文献

[1] Dou, R. F.; Tan, X. H.; Fan, Y. Q.; Pei, Y.; Qiao, M. H.; Fan, K. N.; Sun, B.; Zong, B. N. Acta Chim. Sinica 2016, 74, 503. (窦镕飞, 谭晓荷, 范义秋, 裴燕, 乔明华, 范康年, 孙斌, 宗保宁, 化学学报, 2016, 74, 503.)
[2] Sun, H. J.; Jiang, H. B.; Li, S. H.; Dong, Y. Y.; Wang, H. X.; Pan, Y. J.; Liu, S. C.; Tang, M. S.; Liu, Z. Y. Chem. Eng. J. 2013, 218, 415.
[3] Sun, H. J.; Wang, H. X.; Jiang, H. B.; Li, S. H.; Liu, S. C.; Liu, Z. Y.; Yuan, X. M.; Yang, K. J. Appl. Catal. A 2013, 450, 160.
[4] Zhang, P.; Wu, T. B.; Jiang, T.; Wang, W. T.; Liu, H. Z.; Fan, H. L.; Zhang, Z. F.; Han, B. X. Green Chem. 2013, 15, 152.
[5] Xu, H. L.; Huang, J. J.; Yang, X. Y.; Du, J. M.; Shen, J.; Shen, W. Acta Chim. Sinica 2006, 64, 1615. (徐华龙, 黄静静, 杨新艳, 杜俊明, 沈江, 沈伟, 化学学报, 2006, 64, 1615.)
[6] Kang, J. C.; Cheng, K.; Zhang, L.; Zhang, Q. H.; Ding, J. S.; Hua, W. Q.; Lou, Y. C.; Zhai, Q. G.; Wang, Y. Angew. Chem. Int. Ed. 2011, 50, 5200.
[7] Liu, Y. C.; Fang, K. G.; Chen, J. G.; Sun, Y. H. Green Chem. 2007, 9, 611.
[8] Zuo, S. F.; Huang, Q. Q.; Zhou, R. X. Catal. Today 2008, 139, 88.
[9] Gelesky, M. A.; Chiaro, S. S. X.; Pavan, F. A.; dos Santos, J. H. Z.; Dupont, J. Dalton Trans. 2007, 5549.
[10] Xia, Q. H.; Hidajat, K.; Kawi, S. Catal. Today 2001, 68, 255.
[11] Wang, J. Q.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Fan, K. N. Acta Chim. Sinica 2004, 62, 1765. (王建强, 郭平均, 乔明华, 闫世润, 范康年, 化学学报, 2004, 62, 1765.)
[12] Job, N.; Pereira, M. F. R.; Lambert, S.; Cabiac, A.; Delahay, G.; Colomer, J. F.; Marien, J.; Figueiredo, J. L.; Pirard, J. P. J. Catal. 2006, 240, 160.
[13] Preising, H.; Enke, D. Colloids Surf. A 2007, 300, 21.
[14] Zhou, G. B.; Liu, J. L.; Tan, X. H.; Pei, Y.; Qiao, M. H.; Fan, K. N.; Zong, B. N. Ind. Eng. Chem. Res. 2012, 51, 12205.
[15] Zhao, Y. J.; Zhou, J.; Zhang, J. G.; Wang, S. D. J. Mol. Catal. A 2009, 309, 35.
[16] Wang, Z. Q.; Ma, Y. C.; Lin, J. X. J. Mol. Catal. A 2013, 378, 307.
[17] Campbell, P. S.; Santini, C. C.; Bayard, F.; Chauvin, Y.; Collière, V.; Podgoršek, A.; Costa Gomes, M. F.; Sá, J. J. Catal. 2010, 275, 99.
[18] Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. In Handbook of X-ray Photoelectron Spectroscopy, Ed.:Chastain, J., Perkin-Elmer, Minnesota, 1992, p. 89.
[19] Deroubaix, G.; Marcus, P. Surf. Interface Anal. 1992, 18, 39.
[20] Silvestre-Albero, J.; Serrano-Ruiz, J. C.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F. Appl. Catal. A 2005, 292, 244.
[21] Lorenzut, B.; Montini, T.; Pavel, C. C.; Comotti, M.; Vizza, F.; Bianchini, C.; Fornasiero, P. ChemCatChem 2010, 2, 1096.
[22] Wang, J. Q.; Wang, Y. Z.; Xie, S. H.; Qiao, M. H.; Li, H. X.; Fan, K. N. Appl. Catal. A 2004, 272, 29.
[23] Yuan, P. Q.; Wang, B. Q.; Ma, Y. M.; He, H. M.; Cheng, Z. M.; Yuan, W. K. J. Mol. Catal. A 2009, 309, 124.
[24] Schwab, F.; Lucas, M.; Claus, P. Angew. Chem. Int. Ed. 2011, 50, 10453.
[25] Schwab, F.; Lucas, M.; Claus, P. Green Chem. 2013, 15, 646.
[26] Zhao, Y. J.; Zhou, J.; Zhang, J. G.; Wang, S. D. Catal. Lett. 2009, 131, 597.
[27] Zhou, X. L.; Sun, H. J.; Guo, W.; Liu, Z. Y.; Liu, S. C. J. Nat. Gas Chem. 2011, 20, 53.
[28] Foppa, L.; Dupont, J. Chem. Soc. Rev. 2015, 44, 1886.
[29] Li, W. Z.; Huang, H.; Li, H. J.; Zhang, W.; Liu, H. C. Langmuir 2008, 24, 8358.
[30] Jung, K. T.; Bell, A. T. J. Mol. Catal. A 2000, 163, 27.
[31] Warren, B. E. J. Appl. Phys. 1941, 12, 375.
[32] Robertson, S. D.; Anderson, R. B. J. Catal. 1971, 23, 286.
[33] Elmasides, C.; Kondarides, D. I.; Grünert, W.; Verykios, X. E. J. Phys. Chem. B 1999, 103, 5227.
[34] Ravel, B.; Newville, M. J. Synchrotron Rad. 2005, 12, 537.
[35] Sun, H. J.; Li, Y. Y.; Li, S. H.; Zhang, Y. X.; Liu, S. C.; Liu, Z. Y.; Ren, B. Z. Acta Phys.-Chim. Sin. 2014, 30, 1332. (孙海杰, 李永宇, 李帅辉, 张元馨, 刘寿长, 刘仲毅, 任保增, 物理化学学报, 2014, 30, 1332.)
[36] Bu, J.; Wang, J. Q.; Qiao, M. H.; Yan, S. R.; Li, H. X.; Fan, K. N. Acta Chim. Sinica 2007, 65, 1338. (卜娟, 王建强, 乔明华, 闫世润, 李和兴, 范康年, 化学学报, 2007, 65, 1338.)
[37] Wang, L. J.; Zhang, A. Q.; Li, L.; Liu, H. F.; Liu, S. Z. Acta Chim. Sinica 2012, 70, 1021. (王丽娟, 张爱清, 李琳, 刘汉范, 刘书正, 化学学报, 2012, 70, 1021.)

文章导航

/