基于缺陷曲率对含有V1~V4空位(5,5)单壁碳纳米管[1+1]和[2+1]加成反应的第一性原理研究
收稿日期: 2016-11-29
修回日期: 2017-02-13
网络出版日期: 2017-02-13
基金资助
项目受内蒙古自然科学基金(No.2016MS0513)和内蒙古科技大学青年人才孵化器(No.2014CY012)资助.
[1+1] and [2+1] Additions on a (5,5) Single-Walled Carbon Nanotube with V1~V4 Vacancies Based on Defect Curvature: A First Principles Study
Received date: 2016-11-29
Revised date: 2017-02-13
Online published: 2017-02-13
Supported by
Project supported by the Natural Science Foundation of Inner Mongolia (No. 2016MS0513) and Youth Talent Incubator of Inner Mongolia University of Science and Technology (No. 2014CY012).
本工作使用GGA-PBE方法研究了H和O在含有V1~V4空位(5,5)单壁碳纳米管[1+1](H/[1+1])和[2+1](O/[2+1])加成反应的结合能、几何和电子结构.基于方向曲率理论提出的缺陷曲率包括原子曲率(KM-def)和键曲率(KD-def)预测了空位缺陷区不同原子和键的加成反应活性.计算结果表明,不管是[1+1]还是[2+1]加成,V1和V3空位缺陷中含有悬空键的C原子化学活性最强,且在[2+1]加成反应中C与O原子形成了羰基;对空位缺陷区其它原子或键,H与(5,5)管V1~V4空位缺陷区的原子结合能随KM-def的增大而增大;O加成在大KD-def的C-C键时,C-C键易被打断,形成C-O-C产物结构,且相应的结合能较大;O加成在小KD-def的C-C键时,C-C键未被打断,形成三元环产物结构.H/[1+1]和O/[2+1]加成反应结合能除了主要受曲率的影响,还受到参与反应的C原子在(5,5)管最高占据分子轨道的电荷密度以及分波态密度的影响.这些研究将为含有空位缺陷碳纳米管的表面修饰提供理论依据.
李磊 , 贾桂霄 , 王晓霞 , 吴铜伟 , 宋希文 , 安胜利 . 基于缺陷曲率对含有V1~V4空位(5,5)单壁碳纳米管[1+1]和[2+1]加成反应的第一性原理研究[J]. 化学学报, 2017 , 75(3) : 284 -292 . DOI: 10.6023/A16110645
Binding energies, geometric and electronic structures for[1+1] (H/[1+1]) and[2+1] (O/[2+1]) additions of H and O atoms on a (5,5) single-walled carbon nanotube with V1~V4 vacancies are studied using a GGA-PBE method in this work. Defect curvature proposed on the basis of directional curvature theory, including atomic curvature (KM-def) and bond curvature (KD-def), is used to predict the reactivities of different atoms and bonds at the defect structural area. We find that the existence of vacancy defects enhances the H and O adsorption ability on the (5,5) tube. The calculated results show that in the V1 and V3 defects the C atoms with two-coordination have the strongest chemical activity for[1+1] and[2+1] additions, and among which the C atoms participated into[2+1] additions form carbonyl groups with O. For other atoms and bonds at the defect structural area, the binding energies of one H atom on the (5,5) tube monotonously increases with the increase of KM-def. When the KD-def of C-C bonds for the O/[2+1] additions are large, the C-C bonds are easily broken, and they are corresponding to adducts with the C-O-C configuration structures and large binding energies. When the KD-def of C-C bonds are small, the C-C bonds are not broken, and they are corresponding to adducts with the closed-3MR (three-member ring) structures. The binding energies for the H/[1+1] and O/[2+1] additions on the (5,5) tube mainly are determined by the curvature and affected by the electronic density in frontier orbital and partial density of state (PDOS) of C atoms participated in the reactions. The large electronic density in the highest occupied molecular orbital (HOMO) and large PDOS of C atoms near the Fermi level strengthen the adsorption of H and O atoms on the (5,5) tube. This study will provide a theoretical basis for surface modifications of carbon nanotubes with vacancy defects.
Key words: carbon nanotubes; vacancies; defect curvature; electronic structures; additions
[1] Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nano-tubes:Synthesis, Structure, Properties and Applications, Springer, Germany, 2001, pp. 11~28.
[2] Zhou, Z. W.; Li, Q. W.; Chen, L. Z.; Liu, C. H.; Fan, S. S. Acta Chim. Sinica 2016, 74, 738(in Chinese). (周智伟, 李庆威, 陈鲁倬, 刘长洪, 范守善, 化学学报, 2016, 74, 738.)
[3] Li, L. C.; Zhang, M.; Mao, S.; Yang, C.; Tian, A. M. Acta Chim. Sinica 2015, 73, 143(in Chinese). (李来才, 张明, 毛双, 杨春, 田安民, 化学学报, 2015, 73, 143.)
[4] Zhu, H.; Suenaga, K.; Hashimoto, A.; Urita, K.; Iijima, S. Chem. Phys. Lett. 2005, 412, 116.
[5] Ouyang, M. Science 2001, 292, 702.
[6] Huang, J.; Chen, S.; Ren, Z.; Wang, Z.; Kempa, K.; Naughton, M.; Chen, G.; Dresselhaus, M. Phys. Rev. Lett. 2007, 98, 185501.
[7] Stone, A. J.; Wales, D. J. Chem. Phys. Lett. 1986, 128, 501.
[8] Lusk, M. T.; Wu, D. T.; Carr, L. D. Phys. Rev. B 2010, 81, 155444.
[9] Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I. I.; Batzill, M. Nat. Nanotechnol. 2010, 53, 1.
[10] Lee, G. D.; Wang, C. Z.; Yoon, E.; Hwang, N. M.; Ho, K. M. Appl. Phys. Lett. 2010, 97, 093106.
[11] Sharma, S.; Chandra, R.; Kumar, P.; Kumar, N. Comput. Mater. Sci. 2014, 86, 1.
[12] Rafiee, R.; Pourazizi, R. Mater. Res. 2014, 17, 758.
[13] Zhou, Q. X.; Wang, C. Y.; Fu, Z. B.; Tang, Y. J.; Zhang, H. Front. Phys. 2014, 9, 200.
[14] Mashapa, M. G.; Chetty, N.; Ray, S. S. J. Nanosci. Nanotechnol. 2012, 12, 7030.
[15] Kotakoski, J.; Krasheninnikov, A. V.; Nordlund, K. Phys. Rev. B 2006, 74, 245420.
[16] Amorim, R. G.; Fazzio, A.; Antonelli, A.; Novaes, F. D.; da Silva, A. J. R. Nano Lett. 2007, 7, 2459.
[17] Charlier, J. C. Acc. Chem. Res. 2002, 35, 1063.
[18] Lu, X.; Chen, Z. F.; Schleyer, P. R. J. Am. Chem. Soc. 2005, 127, 20.
[19] Goclon, J.; Kozlowska, M.; Rodziewicz, P. Chem. Phys. Chem. 2015, 16, 2775.
[20] Zhang, S.; Mielke, S. L.; Khare, R.; Troya, D.; Ruoff, R. S.; Schatz, G. C.; Belytschko, T. Phys. Rev. B 2005, 71, 115403.
[21] Dumitrica, T.; Hua, M.; Yakobson, B. I. Proc. Natl. Acad. Sci. 2006, 103, 6105.
[22] Sammalkorpi, M.; Krasheninnikov, A.; Kuronen, A.; Nordlund, K.; Kaski, K. Phys. Rev. B 2004, 70, 245416.
[23] Zhou, R. L.; He, H. Y.; Pan, B. C. Phys. Rev. B 2007, 75, 113401.
[24] He, H. Y.; Pan, B. C. Phys. E 2008, 40, 542.
[25] He, H. Y.; Pan, B. C. J. Phys. Chem. C 2008, 112, 18876.
[26] Terrones, M.; Terrones, H.; Banhart, F.; Charlier, J. C.; Ajayan, P. M. Science 2000, 288, 1226.
[27] Lu, A. J.; Pan, B. C. Phys. Rev. B 2005, 71, 165416.
[28] Li, W.; Lu, X. M.; Li, G. Q.; Ma, J. J.; Yu, Z. P.; Chen, J. F.; Pan, Z. L.; He, Q. Y. Appl. Surf. Sci. 2016, 364, 560.
[29] Zhou, Q. X.; Yang, X.; Fu, Z. B.; Wang, C. Y.; Yuan, L.; Zhang, H.; Tang, Y. J. Phys. E 2015, 65, 77.
[30] Goclon, J.; Kozlowska, M.; Rodziewicz, P. Chem. Phys. Chem. 2015, 16, 2775.
[31] He, H. Y.; Pan, B. C. Front. Phys. 2009, 4, 297.
[32] Shukla, P. K.; Mishra, P. C. Chem. Phys. 2010, 369, 101.
[33] Zhuang, H. L.; Zheng, G. P.; Soh, A. K. Comp. Mater. Sci. 2008, 43, 823.
[34] Inntam, C.; Limtrakul, J. J. Phys. Chem. C 2010, 114, 21327.
[35] Sozykin, S. A.; Beskachko, V. P.; Vyatkin, G. P. Mater. Sci. Forum. 2016, 843, 132.
[36] Orellana, W. Phys. Rev. B 2009, 80, 075421.
[37] Chen, C. H.; Huang, C. C. Sep. Purif. Technol. 2009, 65, 305.
[38] Jia, G. X.; Pan, F.; Bao, J. X.; Song, X. W.; Zhang, Y. F. Surf. Sci. 2015, 633, 29.
[39] Li, J. Q.; Jia, G. X.; Zhang, Y. F. Chem. Eur. J. 2007, 13, 6430.
[40] Jia, G. X.; Li, J. Q.; Zhang, Y. F. Acta Chim. Sinica 2005, 63, 97(in Chinese). (贾桂霄, 李俊篯, 章永凡, 化学学报, 2005, 63, 97.)
[41] Li, J. Q.; Jia, G. X.; Zhang, Y. F.; Chen, Y. Chem. Mater. 2006, 18, 3579.
[42] Chen, Y.; Li, J. Q.; Hu, C. L. J. Phys. Chem. C 2008, 112, 18787.
[43] Chen, Y.; Li, J. Q.; Chen, L.G. J. Theor. Comput. Chem. 2008, 7, 681.
[44] Jia, G. X.; Li, J. Q.; Chen, L. G.; Li, Y.; Ding, K. N.; Zhang, Y. F. Inter. J. Quant. Chem. 2009, 109, 668.
[45] Jia, G. X.; Li, X. G.; Song, X. W.; Li, J. Q.; Chen, Y. Surf. Sci. 2013, 608, 122.
[46] Jia, G. X.; Pan, F.; Bao, J. X.; Song, X. W.; Zhang, Y. F. Surf. Sci. 2015, 633, 29.
[47] Jia, G. X.; Li, L.; Wang, X. X.; Sun, S. S.; Bao, J. X.; An, S. L. "Curvature and Size Effects on Reactivities of Mono- to Octa-Vacancies in a (5,5) Single-Walled Carbon nanotube" Chinese J. Struc. Chem. In Press.
[48] Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
[49] Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
[50] Kresse, G.; Furthmller, J. Phys. Rev. B 1996, 54, 11169.
[51] Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 588.
/
| 〈 |
|
〉 |