高性能Pt纳米管中管电催化剂在甲醇燃料电池中的应用
收稿日期: 2016-07-13
修回日期: 2016-10-07
网络出版日期: 2017-03-03
基金资助
项目受国家自然科学基金(51173212)和广东省自然科学基金(S2013020012833)资助.
Pt Tube-in-Tube Arrays as HighPerformance Electrocatalysts for Direct Methanol Fuel Cell
Received date: 2016-07-13
Revised date: 2016-10-07
Online published: 2017-03-03
Supported by
Project supported by the National Natural Science Foundation of China (51173212) and Natural Science Foundation of Guangdong Province (S2013020012833).
李奇 , 许瀚 , 童叶翔 , 李高仁 . 高性能Pt纳米管中管电催化剂在甲醇燃料电池中的应用[J]. 化学学报, 2017 , 75(2) : 193 -198 . DOI: 10.6023/A16070337
The Pt tube-in-tube arrays (TTAs) were designed and synthesized by ZnO template-assisted electrodeposition. As a robust integrated 3D electrocatalyst with high utilization rate and fast transport of electroactive species, the Pt TTAs exhibit a high electrochemically active surface area (ECSA) of 64.9 m2/gPt. Compared with Pt NTAs and commercial Pt/C catalyst, the Pt TTAs exhibit much improved electrocatalytic activity and durability for methanol oxidation. In addition, the Pt TTAs as electrocatalysts exhibit superior CO poisoning tolerance. This work shows the significant progress of Pt-based electrocatalysts with high-performance for direct methanol fuel cells.
Key words: Pt; electrocatalyst; tube-in-tube; methanol oxidation; electroactivity; durability
[1] Jin, R.; Yang, Y.; Xing, Y.; Chen, L.; Song, S.; Jin, R. ACS Nano 2014, 8, 3664.
[2] Zhang, G.; Xia, B. Y.; Xiao, C.; Yu, L.; Wang, X.; Xie, Y.; Lou, X. W. Angew. Chem. Int. Ed. 2013, 52, 8643.
[3] Lou, X. W.; Archer, L. A.; Yang, Z. Adv. Mater. 2008, 20, 3987.
[4] Wang, Z.; Zhou, L.; Lou, X. W. Adv. Mater. 2012, 24, 1903.
[5] Hu, J.; Chen, M.; Fang, X.; Wu, L. Chem. Soc. Rev. 2011, 40, 5472.
[6] Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X.; Lu, G. Q. Chem. Commun. 2011, 47, 12578.
[7] Lai, X.; Halpert, J. E.; Wang, D. Energy Environ. Sci. 2012, 5, 5604.
[8] Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. J. Am. Chem. Soc. 2012, 134, 13934.
[9] Wang, Z.; Luan, D.; Boey, F. Y. C.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 4738.
[10] Wang, L.; Tang, F.; Ozawa, K.; Chen, Z.-G.; Mukherj, A.; Zhu, Y.; Zou, J.; Cheng, H.-M.; Lu, G. Q. Angew. Chem. Int. Ed. 2009, 48, 7048.
[11] Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 17146.
[12] Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gosele, U. Nat. Mater. 2006, 5, 627.
[13] Lai, X.; Li, J.; Korgel, B. A.; Dong, Z.; Li, Z.; Su, F.; Du, J.; Wang, D. Angew. Chem. Int. Ed. 2011, 50, 2738.
[14] Cho, W.; Lee, Y. H.; Lee, H. J.; Oh, M. Adv. Mater. 2011, 23, 1720.
[15] Yang, M.; Ma, J.; Zhang, C.; Yang, Z.; Lu, Y. Angew. Chem. Int. Ed. 2005, 44, 6727.
[16] Roy, P.; Berger, S.; Schmuki, P. Angew. Chem. Int. Ed. 2011, 50, 2904.
[17] Deng, M.-J.; Chang, J.-K.; Wang, C.-C.; Chen, K.-W.; Lin, C.-M.; Tang, M.-T.; Chen, J.-M.; Lu, K.-T. Energy Environ. Sci. 2011, 4, 3942.
[18] Kang, T.-S.; Smith, A. P.; Taylor, B. E.; Durstock, M. F. Nano Lett. 2009, 9, 601.
[19] Park, M.-H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M.; Cho, J. Angew. Chem. Int. Ed. 2011, 50, 9647.
[20] Lee, S. B.; Mitchell, D. T.; Trofin, L.; Nevanen, T. K.; Soderlund, H.; Martin, C. R. Science 2002, 296, 2198.
[21] Zhu, Z. P.; Su, D. S.; Weinberg, G.; Schlogl, R. Nano Lett. 2004, 4, 2255.
[22] Albu, S.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G.; Macak, J.; Schmuki, P. Adv. Mater. 2008, 20, 4135.
[23] Peng, Q.; Sun, X. Y.; Spagnola, J. C.; Saquing, C.; Khan, S. A.; Spontak, R. J.; Parsons, G. N. ACS Nano 2009, 3, 546.
[24] Ben Ishai, M.; Patolsky, F. Angew. Chem. Int. Ed. 2009, 48, 8699.
[25] Wang, Y.-J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Chem. Rev. 2015, 115, 3433.
[26] Rana, M.; Chhetri, M.; Loukya, B.; Patil, P. K.; Datta, R.; Gautam, U. K. ACS Appl. Mater. Interfaces 2015, 7, 4998.
[27] Ruan, M.; Sun, X.; Zhang, Y.; Xu, W. ACS Catal. 2015, 5, 233.
[28] Sneed, B. T.; Young, A. P.; Jalalpoor, D.; Golden, M. C.; Mao, S.; Jiang, Y.; Wang, Y.; Tsung, C.-K. ACS Nano 2014, 8, 7239.
[29] Zhang, C.; Xu, L.; Shan, N.; Sun, T.; Chen, J.; Yan, Y. ACS Catal. 2014, 4, 1926.
[30] Xie, S.; Choi, S.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J.; Kim, M. J.; Xie, Z.; Mavrikakis, M.; Xia, Y. Nano Lett. 2014, 14, 3570.
[31] Zhang, Y.; Hsieh, Y.-C.; Volkov, V.; Su, D.; An, W.; Si, R.; Zhu, Y.; Liu, P.; Wang, J. X.; Adzic, R. R. ACS Catal. 2014, 4, 738.
[32] Qiu, H.-J.; Shen, X.; Wang, J. Q.; Hirata, A.; Fujita, T.; Wang, Y.; Chen, M. W. ACS Catal. 2015, 5, 3779.
[33] Zhang, L.; Iyyamperumal, R.; Yancey, D. F.; Crooks, R. M.; Henkelman, G. ACS Nano 2013, 7, 9168.
[34] Oezaslan, M.; Hasché, F.; Strasser, P. J. Phys. Chem. Lett. 2013, 4, 3273.
[35] Li, H.; Wu, H.; Zhai, Y.; Xu, X.; Jin, Y. ACS Catal. 2013, 3, 2045.
[36] Porter, N. S.; Wu, H.; Quan, Z.; Fang, J. Acc. Chem. Res. 2013, 46, 1867.
[37] Kang, Y.; Li, M.; Cai, Y.; Cargnello, M.; Diaz, R. E.; Gordon, T. R.; Wieder, N. L.; Adzic, R. R.; Gorte, R. J.; Stach, E. A.; Murray, C. B. J. Am. Chem. Soc. 2013, 135, 2741.
[38] Liu, Y.; Mustain, W. E. J. Am. Chem. Soc. 2013, 135, 530.
[39] Kang, Y.; Ye, X.; Chen, J.; Cai, Y.; Diaz, R. E.; Adzic, R. R.; Stach, E. A.; Murray, C. B. J. Am. Chem. Soc. 2013, 135, 42.
[40] Hwang, S. J.; Kim, S.-K.; Lee, J.-G.; Lee, S.-C.; Jang, J. H.; Kim, P.; Lim, T.-H.; Sung, Y.-E.; Yoo, S. J. J. Am. Chem. Soc. 2012, 134, 19508.
[41] Zhou, W.-P.; An, W.; Su, D.; Palomino, R.; Liu, P.; White, M. G.; Adzic, R. R. J. Phys. Chem. Lett. 2012, 3, 3286.
[42] Yang, J.; Yang, J.; Ying, J. Y. ACS Nano 2012, 6, 9373.
[43] Yu, W.; Porosoff, M. D.; Chen, J. G. Chem. Rev. 2012, 112, 5780.
[44] Tan, T. L.; Wang, L.-L.; Johnson, D. D.; Bai, K. Nano Lett. 2012, 12, 4875.
[45] Li, Y.; Li, Y.; Zhu, E.; McLouth, T.; Chiu, C.-Y.; Huang, X.; Huang, Y. J. Am. Chem. Soc. 2012, 134, 12326.
[46] Kang, Y.; Pyo, J. B.; Ye, X.; Gordon, T. R.; Murray, C. B. ACS Nano 2012, 6, 5642.
[47] Liu, H.-X.; Tian, N.; Brandon, M. P.; Zhou, Z.-Y.; Lin, J.-L.; Hardacre, C.; Lin, W.-F.; Sun, S.-G. ACS Catal. 2012, 2, 708.
[48] Kang, Y.; Qi, L.; Li, M.; Diaz, R. E.; Su, D.; Adzic, R. R.; Stach, E.; Li, J.; Murray, C. B. ACS Nano 2012, 6, 2818.
[49] Hong, J. W.; Kang, S. W.; Choi, B.-S.; Kim, D.; Lee, S. B.; Han, S. W. ACS Nano 2012, 6, 2410.
[50] Yamauchi, Y.; Tonegawa, A.; Komatsu, M.; Wang, H.; Wang, L.; Nemoto, Y.; Suzuki, N.; Kuroda, K. J. Am. Chem. Soc. 2012, 134, 5100.
[51] Koenigsmann, C.; Santulli, A. C.; Gong, K.; Vukmirovic, M. B.; Zhou, W.; Sutter, E.; Wong, S. S.; Adzic, R. R. J. Am. Chem. Soc. 2011, 133, 9783.
[52] Wang, L.; Nemoto, Y.; Yamauchi, Y. J. Am. Chem. Soc. 2011, 133, 9674.
[53] Wang, L.; Yamauchi, Y. Chem. Mater. 2011, 23, 2457.
[54] Zhang, H.; Jin, M.; Wang, J.; Li, W.; Camargo, P. H.; Kim, M. J.; Yang, D.; Xie, Z.; Xia, Y. J. Am. Chem. Soc. 2011, 133, 6078.
[55] Xia, B. Y.; Ng, W. T.; Wu, H. B.; Wang, X.; Lou, X. W. Angew. Chem. In. Ed. 2012, 51, 7213.
[56] Chen, Z.; Waje, M.; Li, W.; Yan, Y. Angew. Chem. In. Ed. 2007, 46, 4060.
/
〈 |
|
〉 |