研究通讯

高性能Pt纳米管中管电催化剂在甲醇燃料电池中的应用

  • 李奇 ,
  • 许瀚 ,
  • 童叶翔 ,
  • 李高仁
展开
  • 生物无机教育部重点实验室 环境与能源化学广东普通高校重点实验室 化学学院中山大学 广州 510275

收稿日期: 2016-07-13

  修回日期: 2016-10-07

  网络出版日期: 2017-03-03

基金资助

项目受国家自然科学基金(51173212)和广东省自然科学基金(S2013020012833)资助.

Pt Tube-in-Tube Arrays as HighPerformance Electrocatalysts for Direct Methanol Fuel Cell

  • Li Qi ,
  • Xu Han ,
  • Tong Yexiang ,
  • Li Gaoren
Expand
  • MOE Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China

Received date: 2016-07-13

  Revised date: 2016-10-07

  Online published: 2017-03-03

Supported by

Project supported by the National Natural Science Foundation of China (51173212) and Natural Science Foundation of Guangdong Province (S2013020012833).

摘要

通过ZnO模板辅助的电沉积方法设计和合成了Pt管中管阵列.作为一种具有利用率高、活性物质传输快的三维结构的电催化剂,Pt管中管阵列显示了高电化学活性面积(64.9 m2/gPt).与Pt纳米管和商业Pt/C催化剂相比,Pt管中管阵列明显提高了甲醇氧化电催化活性和稳定性.另外,Pt管中管阵列也显示了优越的抗CO毒化能力.这个研究展示了高性能Pt基直接甲醇燃料电池电催化的一个重要进展.

本文引用格式

李奇 , 许瀚 , 童叶翔 , 李高仁 . 高性能Pt纳米管中管电催化剂在甲醇燃料电池中的应用[J]. 化学学报, 2017 , 75(2) : 193 -198 . DOI: 10.6023/A16070337

Abstract

The Pt tube-in-tube arrays (TTAs) were designed and synthesized by ZnO template-assisted electrodeposition. As a robust integrated 3D electrocatalyst with high utilization rate and fast transport of electroactive species, the Pt TTAs exhibit a high electrochemically active surface area (ECSA) of 64.9 m2/gPt. Compared with Pt NTAs and commercial Pt/C catalyst, the Pt TTAs exhibit much improved electrocatalytic activity and durability for methanol oxidation. In addition, the Pt TTAs as electrocatalysts exhibit superior CO poisoning tolerance. This work shows the significant progress of Pt-based electrocatalysts with high-performance for direct methanol fuel cells.

参考文献

[1] Jin, R.; Yang, Y.; Xing, Y.; Chen, L.; Song, S.; Jin, R. ACS Nano 2014, 8, 3664.
[2] Zhang, G.; Xia, B. Y.; Xiao, C.; Yu, L.; Wang, X.; Xie, Y.; Lou, X. W. Angew. Chem. Int. Ed. 2013, 52, 8643.
[3] Lou, X. W.; Archer, L. A.; Yang, Z. Adv. Mater. 2008, 20, 3987.
[4] Wang, Z.; Zhou, L.; Lou, X. W. Adv. Mater. 2012, 24, 1903.
[5] Hu, J.; Chen, M.; Fang, X.; Wu, L. Chem. Soc. Rev. 2011, 40, 5472.
[6] Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X.; Lu, G. Q. Chem. Commun. 2011, 47, 12578.
[7] Lai, X.; Halpert, J. E.; Wang, D. Energy Environ. Sci. 2012, 5, 5604.
[8] Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. J. Am. Chem. Soc. 2012, 134, 13934.
[9] Wang, Z.; Luan, D.; Boey, F. Y. C.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 4738.
[10] Wang, L.; Tang, F.; Ozawa, K.; Chen, Z.-G.; Mukherj, A.; Zhu, Y.; Zou, J.; Cheng, H.-M.; Lu, G. Q. Angew. Chem. Int. Ed. 2009, 48, 7048.
[11] Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 17146.
[12] Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gosele, U. Nat. Mater. 2006, 5, 627.
[13] Lai, X.; Li, J.; Korgel, B. A.; Dong, Z.; Li, Z.; Su, F.; Du, J.; Wang, D. Angew. Chem. Int. Ed. 2011, 50, 2738.
[14] Cho, W.; Lee, Y. H.; Lee, H. J.; Oh, M. Adv. Mater. 2011, 23, 1720.
[15] Yang, M.; Ma, J.; Zhang, C.; Yang, Z.; Lu, Y. Angew. Chem. Int. Ed. 2005, 44, 6727.
[16] Roy, P.; Berger, S.; Schmuki, P. Angew. Chem. Int. Ed. 2011, 50, 2904.
[17] Deng, M.-J.; Chang, J.-K.; Wang, C.-C.; Chen, K.-W.; Lin, C.-M.; Tang, M.-T.; Chen, J.-M.; Lu, K.-T. Energy Environ. Sci. 2011, 4, 3942.
[18] Kang, T.-S.; Smith, A. P.; Taylor, B. E.; Durstock, M. F. Nano Lett. 2009, 9, 601.
[19] Park, M.-H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M.; Cho, J. Angew. Chem. Int. Ed. 2011, 50, 9647.
[20] Lee, S. B.; Mitchell, D. T.; Trofin, L.; Nevanen, T. K.; Soderlund, H.; Martin, C. R. Science 2002, 296, 2198.
[21] Zhu, Z. P.; Su, D. S.; Weinberg, G.; Schlogl, R. Nano Lett. 2004, 4, 2255.
[22] Albu, S.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G.; Macak, J.; Schmuki, P. Adv. Mater. 2008, 20, 4135.
[23] Peng, Q.; Sun, X. Y.; Spagnola, J. C.; Saquing, C.; Khan, S. A.; Spontak, R. J.; Parsons, G. N. ACS Nano 2009, 3, 546.
[24] Ben Ishai, M.; Patolsky, F. Angew. Chem. Int. Ed. 2009, 48, 8699.
[25] Wang, Y.-J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Chem. Rev. 2015, 115, 3433.
[26] Rana, M.; Chhetri, M.; Loukya, B.; Patil, P. K.; Datta, R.; Gautam, U. K. ACS Appl. Mater. Interfaces 2015, 7, 4998.
[27] Ruan, M.; Sun, X.; Zhang, Y.; Xu, W. ACS Catal. 2015, 5, 233.
[28] Sneed, B. T.; Young, A. P.; Jalalpoor, D.; Golden, M. C.; Mao, S.; Jiang, Y.; Wang, Y.; Tsung, C.-K. ACS Nano 2014, 8, 7239.
[29] Zhang, C.; Xu, L.; Shan, N.; Sun, T.; Chen, J.; Yan, Y. ACS Catal. 2014, 4, 1926.
[30] Xie, S.; Choi, S.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J.; Kim, M. J.; Xie, Z.; Mavrikakis, M.; Xia, Y. Nano Lett. 2014, 14, 3570.
[31] Zhang, Y.; Hsieh, Y.-C.; Volkov, V.; Su, D.; An, W.; Si, R.; Zhu, Y.; Liu, P.; Wang, J. X.; Adzic, R. R. ACS Catal. 2014, 4, 738.
[32] Qiu, H.-J.; Shen, X.; Wang, J. Q.; Hirata, A.; Fujita, T.; Wang, Y.; Chen, M. W. ACS Catal. 2015, 5, 3779.
[33] Zhang, L.; Iyyamperumal, R.; Yancey, D. F.; Crooks, R. M.; Henkelman, G. ACS Nano 2013, 7, 9168.
[34] Oezaslan, M.; Hasché, F.; Strasser, P. J. Phys. Chem. Lett. 2013, 4, 3273.
[35] Li, H.; Wu, H.; Zhai, Y.; Xu, X.; Jin, Y. ACS Catal. 2013, 3, 2045.
[36] Porter, N. S.; Wu, H.; Quan, Z.; Fang, J. Acc. Chem. Res. 2013, 46, 1867.
[37] Kang, Y.; Li, M.; Cai, Y.; Cargnello, M.; Diaz, R. E.; Gordon, T. R.; Wieder, N. L.; Adzic, R. R.; Gorte, R. J.; Stach, E. A.; Murray, C. B. J. Am. Chem. Soc. 2013, 135, 2741.
[38] Liu, Y.; Mustain, W. E. J. Am. Chem. Soc. 2013, 135, 530.
[39] Kang, Y.; Ye, X.; Chen, J.; Cai, Y.; Diaz, R. E.; Adzic, R. R.; Stach, E. A.; Murray, C. B. J. Am. Chem. Soc. 2013, 135, 42.
[40] Hwang, S. J.; Kim, S.-K.; Lee, J.-G.; Lee, S.-C.; Jang, J. H.; Kim, P.; Lim, T.-H.; Sung, Y.-E.; Yoo, S. J. J. Am. Chem. Soc. 2012, 134, 19508.
[41] Zhou, W.-P.; An, W.; Su, D.; Palomino, R.; Liu, P.; White, M. G.; Adzic, R. R. J. Phys. Chem. Lett. 2012, 3, 3286.
[42] Yang, J.; Yang, J.; Ying, J. Y. ACS Nano 2012, 6, 9373.
[43] Yu, W.; Porosoff, M. D.; Chen, J. G. Chem. Rev. 2012, 112, 5780.
[44] Tan, T. L.; Wang, L.-L.; Johnson, D. D.; Bai, K. Nano Lett. 2012, 12, 4875.
[45] Li, Y.; Li, Y.; Zhu, E.; McLouth, T.; Chiu, C.-Y.; Huang, X.; Huang, Y. J. Am. Chem. Soc. 2012, 134, 12326.
[46] Kang, Y.; Pyo, J. B.; Ye, X.; Gordon, T. R.; Murray, C. B. ACS Nano 2012, 6, 5642.
[47] Liu, H.-X.; Tian, N.; Brandon, M. P.; Zhou, Z.-Y.; Lin, J.-L.; Hardacre, C.; Lin, W.-F.; Sun, S.-G. ACS Catal. 2012, 2, 708.
[48] Kang, Y.; Qi, L.; Li, M.; Diaz, R. E.; Su, D.; Adzic, R. R.; Stach, E.; Li, J.; Murray, C. B. ACS Nano 2012, 6, 2818.
[49] Hong, J. W.; Kang, S. W.; Choi, B.-S.; Kim, D.; Lee, S. B.; Han, S. W. ACS Nano 2012, 6, 2410.
[50] Yamauchi, Y.; Tonegawa, A.; Komatsu, M.; Wang, H.; Wang, L.; Nemoto, Y.; Suzuki, N.; Kuroda, K. J. Am. Chem. Soc. 2012, 134, 5100.
[51] Koenigsmann, C.; Santulli, A. C.; Gong, K.; Vukmirovic, M. B.; Zhou, W.; Sutter, E.; Wong, S. S.; Adzic, R. R. J. Am. Chem. Soc. 2011, 133, 9783.
[52] Wang, L.; Nemoto, Y.; Yamauchi, Y. J. Am. Chem. Soc. 2011, 133, 9674.
[53] Wang, L.; Yamauchi, Y. Chem. Mater. 2011, 23, 2457.
[54] Zhang, H.; Jin, M.; Wang, J.; Li, W.; Camargo, P. H.; Kim, M. J.; Yang, D.; Xie, Z.; Xia, Y. J. Am. Chem. Soc. 2011, 133, 6078.
[55] Xia, B. Y.; Ng, W. T.; Wu, H. B.; Wang, X.; Lou, X. W. Angew. Chem. In. Ed. 2012, 51, 7213.
[56] Chen, Z.; Waje, M.; Li, W.; Yan, Y. Angew. Chem. In. Ed. 2007, 46, 4060.

文章导航

/