新型香豆素类氟离子荧光探针的合成及细胞成像研究
收稿日期: 2017-01-19
网络出版日期: 2017-03-07
基金资助
项目受国家自然科学基金(Nos.21472148,21072158)、陕西省留学人员科技活动择优资助项目(No.20151190)和西北大学优秀青年学术骨干支持计划资助.
Novel Coumarin-Based Fluorescent Probes for Detecting Fluoride Ions in Living Cells
Received date: 2017-01-19
Online published: 2017-03-07
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21472148, 21072158), the Preferential Financing of Science and Technology Activities in Returned Overseas Graduates in Shaanxi Province (No. 20151190) and the Academic Back-bone of Northwest University Outstanding Youth Support Program.
王少静 , 李长伟 , 李锦 , 陈邦 , 郭媛 . 新型香豆素类氟离子荧光探针的合成及细胞成像研究[J]. 化学学报, 2017 , 75(4) : 383 -390 . DOI: 10.6023/A17010029
Fluoride, the smallest anion, is one of the most important anions in the human body which is involved in many diseases and many life activities can be displayed by its situation. It is necessary to detect fluoride ions and determine its concentration in organism. Compared to the traditional detection methods, fluorescence probes exhibit high sensitivity, high selectivity and potential for real-time detection. Because coumarin derivatives have strong emission in the visible region, high quantum yield, high photostability and excellent bioactivity, we choose them as fluorophore to prepare new fluorescent probes. Based on the mechanism of intramolecular charge transfer (ICT), the fluorescent probes CS1, CS2 and CS3 that are coumarin-based derivatives were designed, synthesized and utilized in fluoride ions detection. Their structures were confirmed by 1H NMR, 13C NMR, IR and HRMS. Meanwhile, the crystals of CS3 were obtained by slow evaporation of an ether solution at room temperature over a period of a few days. The detection limits of CS1, CS2 and CS3 for fluoride ions were respectively determined as 21.77, 3.52 and 1.99 μmol/L, indicating that probes have a good sensitivity to the detection of fluoride. The selectivity experiment results demonstrated that the three probes were highly selective for fluoride ions over other competitive. The recognition mechanism of the fluorescent response to fluoride ions was verified by HRMS and NMR experiment in this work. A lot of detailed experiment results indicated that the fluorescent response of probes to fluoride ions attributed to the specific fluoride promoted Si-O cleavage. The study of the effect of probes on viability of cells were carried out using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The experimental results indicated that the three probes had low cytotoxicity. Then the three probes were successfully used to fluorescent detect and image fluoride ions in MCF-7 cells by fluorescence spectrum and confocal fluorescence microscopic imaging, respectively.
[1] Gale, P. A. Chem. Soc. Rev. 2010, 39, 3746.
[2] Bowman-James, K. Acc. Chem. Res. 2005, 38, 671.
[3] Gale, P. A. Acc. Chem. Res. 2006, 39, 465.
[4] Zhou, Y.; Zhang, J. F.; Yoon, J. Chem. Rev. 2014, 114, 5511.
[5] Suksai, C.; Tuntulani, T. Top. Curr. Chem. 2005, 255, 163.
[6] Gale, P. A. Chem. Commun. 2011, 47, 82.
[7] Featherstone, J. D. B. Community. Dent. Oral. Epidemiol. 1999, 27, 31.
[8] Bassin, E. B.; Wypij, D.; Davis, R. B.; Mittleman, M. A. Cancer Causes Control 2006, 17, 421.
[9] Matsui, H.; Morimoto, M.; Horimoto, K.; Nishimura, Y. Toxicol. In Vitro 2007, 21, 1113.
[10] Basha, P. M.; Madhusudhan, N. Neurochem. Res. 2010, 35, 1017.
[11] Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S. Chem. Rev. 2010, 110, 3958.
[12] Barbier, O.; Arreola-Mendoza, L.; DelRazo, L. M. Chem.-Biol. Interact. 2010, 188, 319.
[13] Singh, P.; Barjatiya, M.; Dhing, S.; Bhatnagar, R.; Kothari, S.; Dhar, V. Urol. Res. 2001, 29, 238.
[14] Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Chem. Soc. Rev. 2010, 39, 3936.
[15] Hang, Y. P.; Wu, C. Y. Anal. Chim. Acta 2010, 661, 161.
[16] Somer, G.; Kalayci, S.; Basak, I. Talanta 2010, 80, 1129.
[17] Tan, W. B.; Leng, T. H.; Lai, G. Q.; Li, Z. F.; Wu, J. F.; Shen, Y. J.; Wang, C. Y. Chin. J. Chem. 2016, 34, 809.
[18] Zhang, L.; Wang, L. M.; Zhang, G. J.; Yu, J. J.; Cai, X. F.; Teng, M. S.; Wu, Y. Chin. J. Chem. 2012, 30, 2823.
[19] Chen, Z. J.; Wang, L. M.; Zou, G. Zhang, L.; Zhang, J. L.; Cai, X. F.; Teng, M. S. Dyes Pigments 2012, 94, 410.
[20] Chen, W.; Li, Z.; Shi, W.; Ma, H. M. Chem. Commun. 2012, 48, 2809.
[21] Zhuo, J. B.; Yan, X. Q.; Wang, X. X.; Xie, L. L.; Yuan, Y. F. Chin. J. Org. Chem. 2015, 35, 1090(in Chinese). (卓继斌, 晏希泉, 王小雪, 谢莉莉, 袁耀锋, 有机化学, 2015, 35, 1090.)
[22] Wang, F.; Wu, J. S.; Zhuang, X. Q.; Zhang, W. J.; Liu, W. M. Sens. Actuators, B 2010, 146, 260.
[23] Qu, Y.; Hua, J.; Tian, H. Org. Lett. 2010, 12, 3320.
[24] Wang, J. Q.; Yang, L. Y.; Hou, C.; Cao, H. S. Org. Biomol. Chem. 2012, 10, 6271.
[25] Ke, I. S.; Myahkostupov, M.; Castellano, F. N. J. Am. Chem. Soc. 2012, 134, 15309.
[26] Fu, L.; Jiang, F. L.; Fortin, D.; Harvey, P. D.; Liu, Y. Chem. Commun. 2011, 47, 5503.
[27] Liu, X. M.; Zhao, Q.; Li, Y.; Song, W. C.; Li, Y. P.; Chang, Z.; Bu, X. H. Chin. Chem. Lett. 2013, 24, 962.
[28] Lv, H. M.; Yang, X. F.; Zhong, Y. G.; Guo, Y.; Li, Z.; Li, H. Anal. Chem. 2014, 86, 1800.
[29] Zhao, Z. S.; Guo, X. D.; Li, S. Y.; Yang, G. Q. Acta Chim. Sinica 2016, 74, 593(in Chinese). (赵振盛, 郭旭东, 李沙瑜, 杨国强, 化学学报, 2016, 74, 593.)
[30] Yu, H. B.; Li, H. L.; Zhang, X. F.; Xiao, Y.; Fang, P. J.; Lv, C. J.; Hou, W. Acta Chim. Sinica 2015, 73, 450(in Chinese). (于海波, 李红玲, 张新富, 肖义, 方沛菊, 吕春娇, 侯伟, 化学学报, 2015, 73, 450.)
[31] Duan, Y. W.; Yang, X. F.; Zhong, Y. G.; Guo, Y.; Li, Z.; Li, H. Anal. Chim. Acta 2015, 859, 59.
[32] Yang, Y.; Hang, Y. Y.; Zhang, G. X.; Zhao, R.; Zhang, D. Q. Acta Chim. Sinica 2016, 74, 871(in Chinese). (杨阳, 黄嫣嫣, 张关心, 赵睿, 张德清, 化学学报, 2016, 74, 871.)
[33] Wu, Z. S.; Tang, X. J. Anal. Chem. 2015, 87, 8613.
[34] Li, L.; Ji, Y. Z.; Tang, X. J. Anal. Chem. 2014, 86, 10006.
/
〈 |
|
〉 |