研究通讯

(±)-Hongoquercin A全合成:可见光促进有机催化多烯环化策略

  • 杨忠波 ,
  • 李速家 ,
  • 罗三中
展开
  • 中国科学院化学研究所 分子识别与功能院重点实验室 北京 100190

收稿日期: 2016-11-08

  网络出版日期: 2017-03-21

基金资助

项目受科技部(No.2012CB821600)和国家自然科学基金(Nos.21390400,21521002)资助.罗三中感谢中组部拔尖人才计划的支持.

Total Synthesis of (±)-Hongoquercin A via Visible-Light-Mediated Organocatalytic Polyene Cyclization

  • Yang Zhongbo ,
  • Li Sujia ,
  • Luo Sanzhong
Expand
  • Key Laboratory of Molecular Recognition and Functions, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190

Received date: 2016-11-08

  Online published: 2017-03-21

Supported by

Project supported by the Ministry of Science and Technology (No. 2012CB821600) and the Natural Science Foundation of China (Nos. 21390400, 21521002).

摘要

报道了天然产物分子(±)-Hongoquercin A的仿生全合成路线.作者最近开发了在可见光促进下以染料分子曙红为光敏剂的自由基多烯环化反应.以此为基础,将该方法学应用于(±)-Hongoquercin A全合成中的关键步,一步构建该天然产物分子的多环骨架结构,共7步实现了其全合成.

本文引用格式

杨忠波 , 李速家 , 罗三中 . (±)-Hongoquercin A全合成:可见光促进有机催化多烯环化策略[J]. 化学学报, 2017 , 75(4) : 351 -354 . DOI: 10.6023/A16110591

Abstract

Advances in the strategy and methodology of visible light photocatalysis have begun to alter the way how organic chemists address the synthetic problems. These powerful methods have enabled the development of novel reaction schemes and approaches (mostly via radical path) for the total synthesis of nature products under visible light photoredox catalysis. Terpenoids, possessing intriguing biological activities together with their structural diversity, have remained as attractive targets for chemists. On the basis of their biogenetic pathways, polyene cyclization is the most straightforward pathway to attain terpenoid skeletons. Most recently, a few examples of stereoselective radical polyene cyclizations have been developed. However, most of the radical approaches suffer from the requirement for stoichiometric loading of metals or radical initiators. And in many cases, low yields are obtained with complicated reaction mixtures, which cumber further development along this line especially in nature products synthesis. In our previous work, we have developed a visible-light-mediated, stereoselective organocatalytic cyclization of polyenes. The wide scope as well as the high chemoselectivity inspires us to apply this method in the total synthesis of terpenoid natural products. Thus we report here total synthesis of (±)-Hongoquercin A (1), starting from trans,trans-farnesol (4) in 7 steps and with overall 14.4% yield. Our developed visible-light-mediated redox organocatalytic methodology is employed as the key step to construct multiple ring-fused skeleton of 1 in one step.[To a flame-dried Schlenk tube equipped with a magnetic stir bar was added 3-hydroxy-5-methyl-2-((2E,6E)-3,7,11-trimethyl-dodeca-2,6,10-trien-1-yl)cyclohex-2-enone (3) (0.20 g, 0.61 mmol) and Eosin Y (4.0 mg, 0.0061 mmol). The mixture was diluted with 1.5 mL of anhydrous hexafluoroisopropanol. The reaction was irradiated with Green LEDs at room temperature for 2 h. Upon completion, the reaction mixture was concentrated in vacuo. The residue was purified by silica gel chromatography (10% EtOAc in Petroleum ether) to give 2 (ca. 60% yield, colorless oil) containing all the skeleton carbons of Hongoquercin A.

参考文献

[1] (a) Nicolaou, K. C.; Vourloumis, D.; Wissinger, N.; Baran, P. S. Angew. Chem. Int. Ed. 2000, 39, 44.
(b) Nicolaou, K. C.; Montagnon, T.; Snyder, S. A. Chem. Commun. 2003, 551.
(c) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem. Int. Ed. 2006, 45, 7134.
(d) Maimone, T. J.; Baran, P. S. Nat. Chem. Biol. 2007, 3, 396.
[2] For a recent review, see:(a) Yoder, R. A.; Johnston, J. N. Chem. Rev. 2005, 105, 4730; For early contributions, see:
(b) Johnson, W. S.; Kinnel, R. B. J. Am. Chem. Soc. 1966, 88, 3861.
(c) Tamelen, E. E. V.; McCormick, J. P. J. Am. Chem. Soc. 1969, 91, 1847.
[3] For selected examples in this field, see:(a) Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 4906.
(b) Ishihara, K.; Ishibashi, H.; Yamamoto, H. J. Am. Chem. Soc. 2001, 123, 1505.
(c) Ishibashi, H.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 11122.
(d) Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2012, 134, 11992.
(e) Zhao, Y.-J.; Li, B.; Tan, L.-J. S.; Shen, Z.-L.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132, 10242.
(f) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900.
(g) Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.
(h) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 5030.
(i) Mullen, C. A.; Campbell, A. N.; Gagn, M. R. Angew. Chem. Int. Ed. 2008, 47, 6011.
(j) Sethofer, S. G.; Mayer, T.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 8276.
(k) Schafroth, M. A.; Sarlah, D.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2012, 134, 20276.
[4] For a recent review, see:(a) Justicia, J.; Álvarez de Cienfuegos, L.; Campaña, A. G.; Miguel, D.; Jakoby, V.; Gansäuer, A.; Cuerva, J. M. Chem. Soc. Rev. 2011, 40, 3525. For selected examples, see:
(b) Rendeler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.
(c) Handa, S.; Pattenden, G. J. Chem. Soc., Perkin Trans. 11999, 843.
(d) Kates, S. A.; Dombroski, M. A.; Snider, B. B. J. Org. Chem. 1990, 55, 2427.
(e) Zoretic, P. A.; Fang, H.; Ribeiro, A. A. J. Org. Chem. 1998, 63, 4779.
(f) Morcillo, S. P.; Miguel, D.; Resa, S.; Martín-Lasanta, A.; Millán, A.; Choquesillo-Lazarte, D.; Gar-cía-Ruiz, J. M.; Mota, A. J.; Justicia, J.; Cuerva, J. M. J. Am. Chem. Soc. 2014, 136, 6943.
(g) Gu, S.; Yan, Y.-L.; Zhao, H.-W.; Zhu, N.-Y.; Yang, D. Angew. Chem. Int. Ed. 2002, 41, 3014.
(h) Heinemann, C.; Demuth, M. J. Am. Chem. Soc. 1999, 121, 4894.
(i) Bunte, J. O.; Rinne, S.; Schäfer, C.; Neumann, B.; Stammlerb, H.-G.; Mattaya, J. Tetrahedron Lett. 2003, 44, 45.
[5] For recent selected reviews on the field of photocatalysis in photochemical synthesis, see:(a) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
(b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(c) Corrigan, N.; Shanmugam, S.; Xu, J.; Boyer, C. Chem. Soc. Rev. 2016, 45, 6165.
(d) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898. For reviews on the field of visible-light photoredox catalysis, see:
(e) Ding, K.; Xiao, W.; Wu, L.-Z. Acta Chim. Sinica 2017, 75, 5(in Chinese). (丁奎岭, 肖文精, 吴骊珠, 化学学报, 2017, 75, 5.)
(f) Pei, P. Zhang, F.; Yi, H.; Lei, A. Acta Chim. Sinica 2017, 75, 15(in Chinese). (裴朋昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15.)
(g) Wang, D.; Zhang, L.; Luo, S. Acta Chim. Sinica 2017, 75, 22(in Chinese). (王德红, 张龙, 罗三中, 化学学报, 2017, 75, 22.)
(h) Zhong, J.-J.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Acta Chim. Sinica 2017, 75, 34(in Chinese). (钟建基, 孟庆元, 陈彬, 佟振合, 吴骊珠, 化学学报, 2017, 75, 34.)
(i) Zhang, J.; Chen, Y. Acta Chim. Sinica 2017, 75, 41(in Chinese). (张晶, 陈以昀, 化学学报, 2017, 75, 41.)
(j) Guan, B.; Xu, X.; Wang, H.; Li, X. Chin. J. Org. Chem. 2016, 36, 1564(in Chinese). (关保川, 许孝良, 王红, 李小年, 有机化学, 2016, 36, 1564.)
(k) Sun, X.; Yu, S. Chin. J. Org. Chem. 2016, 36, 239(in Chinese). (孙晓阳, 俞寿云, 有机化学, 2016, 36, 239.)
(l) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
(m) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(n) Xuan, J.; Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Eur. J. Org. Chem. 2013, 6755.
(o) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
(p) Zeitler, K. Angew. Chem. Int. Ed. 2009, 48, 9785.
[6] For recently selected reviews on the field of applications of visible light photoredox catalysis in natural product synthesis, see:(a) Nicholls, T. P.; Leonori, D.; Bissember, A. C. Nat. Prod. Rep. 2016, 33, 1248.
(b) Kärkäs, M. D.; Porco, J. A., Jr.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.
(c) Tan, F.; Xiao, W. Acta Chim. Sinica 2015, 73, 85(in Chinese). (谭芬, 肖文精, 化学学报, 2015, 73, 85.)
[7] Yang, Z.; Li, H.; Zhang, L.; Zhang, M.-T.; Cheng, J.-P.; Luo, S. Chem. Eur. J. 2015, 21, 14723.
[8] (a) Roll, D. M.; Manning, J. K.; Carter, G. T. J. Antibiot. 1998, 51, 635. For fermentation studies, see:
(b) Abbanat, D. A.; Singh, M. P.; Greenstein, M. J. Antibiot. 1998, 51, 708.
[9] Tsujimori, H.; Bando, M.; Mori, K. Eur. J. Org. Chem. 2000, 297.
[10] Kurdyumov, A. V.; Hsung, R. P. J. Am. Chem. Soc. 2006, 128, 6272.
[11] Rosen, B. R.; Simke, L. R.; Thuy-Boun, P. S.; Dixon, D. D.; Yu, J.-Q.; Baran, P. S. Angew. Chem. Int. Ed. 2013, 52, 7317.
[12] For reviews on the field of photochemical reactions as key steps in natural product synthesis, see:(a) Bach, T.; Hehn. J. P. Angew. Chem. Int. Ed. 2011, 50, 1000.
(b) Hoffmann. N. Chem. Rev. 2008, 108, 1052.
(c) Iriondo-Alberdi, J.; Greaney, M. F. Eur. J. Org. Chem. 2007, 4801.
[13] For recently selected examples on the field of applications of DDQ as aromatization reagent in natural product synthesis, see:(a) Li, H.; Chen, Q.; Lu, Z.; Li, A. J. Am. Chem. Soc. 2016, 138, 15555.
(b) Yang, P.; Yao, M.; Li, J.; Li, Y.; Li, A. Angew. Chem. Int. Ed. 2016, 55, 6964.
(c) Zhou, S.; Chen, H.; Luo, Y.; Zhang, W.; Li, A. Angew. Chem. Int. Ed. 2015, 54, 6878.

文章导航

/