综述

功能性纳米零价铁的构筑及其对环境放射性核素铀的富集应用研究进展

  • 陈海军 ,
  • 黄舒怡 ,
  • 张志宾 ,
  • 刘云海 ,
  • 王祥科
展开
  • a 东华理工大学 化学生物与材料科学学院 南昌 330013;
    b 华北电力大学 环境科学与工程学院 北京 102206

收稿日期: 2017-01-30

  网络出版日期: 2017-03-21

基金资助

项目受国家自然科学基金(Nos.91326202,21577032)和挑战计划(No.JCKY2016212A04)资助.

Synthesis of Functional Nanoscale Zero-Valent Iron Composites for the Application of Radioactive Uranium Enrichment from Environment: A Review

  • Chen Haijun ,
  • Huang Shuyi ,
  • Zhang Zhibin ,
  • Liu Yunhai ,
  • Wang Xiangke
Expand
  • a School of Chemistry, Biological and Materials Sciences, East China University of Technology, Nanchang 330013;
    b College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206

Received date: 2017-01-30

  Online published: 2017-03-21

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 91326202, 21577032) and the Science Challenge Project (No. JCKY2016212A04).

摘要

随着核能的广泛应用和核技术的快速发展,环境中放射性核素铀的污染日益严峻.纳米零价铁(Nanoscale Zero Valent Iron:nZVI)因其具有廉价、制备简便、高表面活性及对铀高效的吸附性能等特性而逐渐成为环境中铀污染处理的良好材料.采用可行的方法制备纳米零价铁复合材料,借助单体材料之间的协同效应可进一步提高材料对铀酰的吸附性能.因此,纳米零价铁复合材料的制备以及应用成为近期环境科学领域的研究热点之一.针对纳米零价铁及其复合材料对环境中铀酰的去除研究进行了概述和展望,包括纳米零价铁及其复合材料的制备方法、去除效果及去除机理,并且简要探讨了纳米零价铁及其复合材料在环境放射性污染治理的应用前景,以期为今后的深入研究和实际应用提供参考依据.

本文引用格式

陈海军 , 黄舒怡 , 张志宾 , 刘云海 , 王祥科 . 功能性纳米零价铁的构筑及其对环境放射性核素铀的富集应用研究进展[J]. 化学学报, 2017 , 75(6) : 560 -574 . DOI: 10.6023/A17010039

Abstract

With the widespread using of nuclear energy, the nuclear technology is developed rapidly and the radionuclide pollution such as uranium has become the serious problem for human health. Nanoscale Zero-Valent Iron (nZVI) has become the excellent adsorbent for the removal of uranium ions from environment because of its low cost, easy preparation, high surface-activity and excellent performance for adsorption of uranium. Due to synergistic effect of each monomer, the nZVI nanocomposites have been applied to remove radionuclides and the adsorption capacity of nZVI nanocomposites are improved to a further level. Hence, the preparation of nZVI and its nanocomposites for the efficient removal of radionuclides is one of the hot issues in the field of environmental science. The aim of this review is to summarize and outlook the recent research on the application of nZVI nanocomposites for the efficient removal of radioactive uranium from environment. The preparation of nZVI and its composites, the removal efficiency and removal mechanism has been summarized, and the application of the nZVI nanocomposites in environmental pollution cleanup has also been discussed, expecting for the reference of practical application and future research.

参考文献

[1] Shi, W.; Yuan, L.; Li, Z.; Lan, J.; Zhao, Y.; Chai, Z. Radio. Chim. Acta 2012, 100, 727.
[2] Crane, R. A.; Dickinson, M.; Scott, T. B. Chem. Eng. J. 2015, 262, 319.
[3] Bi, Y.; Hyun, S. P.; Kukkadapu, R. K.; Hayes, K. F. Geochim. Cosmochim. Acta 2013, 102, 175.
[4] Yue, G. Z.; Gao, R.; Zhao, P. X., Chu, M. F., Shuai, M. B. Acta Chim. Sinica 2016, 74, 657. (岳国宗, 高瑞, 赵鹏翔, 褚明福, 帅茂兵, 化学学报, 2016, 74, 657.)
[5] Jang, J.; Dempsey, B. A.; Burgos, W. D. Water Res. 2008, 42, 2269.
[6] Yan, S.; Hua, B.; Bao, Z.; Yang, J.; Liu, C.; Deng, B. Environ. Sci. Technol. 2010, 44, 7783.
[7] Bochud, F. O.; Baechler, S.; Moïse, K. N.; Merlin, N.; Froidevaux, P. Radiat. Meas. 2011, 46, 254.
[8] Matlock, M. M.; Howerton, B. S.; Atwood, D. A. Water Res. 2002, 36, 4757.
[9] Meunier, N.; Drogui, P.; Montané, C.; Hausler, R.; Mercier, G.; Blais, J. J. Hazard. Mater. 2006, 137, 581.
[10] Azarudeen, R. S.; Subha, R.; Jeyakumar, D.; Burkanudeen, A. R. Sep. Purif. Technol. 2013, 116, 366.
[11] Oehmen, A.; Viegas, R.; Velizarov, S.; Reis, M. A.; Crespo, J. G. Desalination 2006, 199, 405.
[12] Li, X.; Du, Y.; Wu, G.; Li, Z.; Li, H.; Sui, H. Chemosphere 2012, 88, 245.
[13] Meunier, N.; Drogui, P.; Montané, C.; Hausler, R.; Mercier, G.; Blais, J. J. Hazard. Mater. 2006, 137, 581.
[14] Zondervan, E.; Roffel, B. J. Membrane Sci. 2007, 304, 40.
[15] Zou, Y.; Cao, X.; Luo, X.; Liu, Y.; Hua, R.; Liu, Y.; Zhang, Z. J. Radioanal. Nucl. Ch. 2015, 306, 515.
[16] Sun, Y.; Yang, S.; Chen, Y.; Ding, C.; Cheng, W.; Wang, X. Environ. Sci. Technol. 2015, 49, 4255.
[17] Sun, Y.; Shao, D.; Chen, C.; Yang, S.; Wang, X. Environ. Sci. Technol. 2013, 47, 9904.
[18] Sun, Y.; Li, J.; Wang, X. Geochim. Cosmochim. Acta 2014, 140, 621.
[19] Li, J.; Chen, C.; Zhang, S.; Wang, X. Environ. Sci. Nano 2014, 1, 488.
[20] Jin, Z.; Wang, X.; Sun, Y.; Ai, Y.; Wang, X. Environ. Sci. Technol. 2015, 49, 9168.
[21] Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environ. Sci. Technol. 2016, 50, 7290.
[22] Shao, D.; Chen, C.; Wang, X. Chem. Eng. J. 2012, 185, 144.
[23] Hu, J.; Yang, S.; Wang, X. J. Chem. Technol. Biot. 2012, 87, 673.
[24] Wu, X.; Tan, X.; Yang, S.; Wen, T.; Guo, H.; Wang, X.; Xu, A. Water Res. 2013, 47, 4159.
[25] Zhao, Y.; Zhao, D.; Chen, C.; Wang, X. J. Colloid. Interface Sci. 2013, 405, 211.
[26] Wen, T.; Wu, X.; Tan, X.; Wang, X.; Xu, A. ACS Appl. Mater. Inter. 2013, 5, 3304.
[27] Li, Y.; Shi, L.W.; Liu, Z. S.; Yang, G. Q. Acta Chim. Sinica 2012, 70, 683. (李燕, 施利文, 刘志山, 杨国庆, 化学学报, 2012, 70, 683.)
[28] Mukherjee, R.; Kumar, R.; Sinha, A.; Lama, Y.; Saha, A. K. Crit. Rev. Env. Sci. Tec. 2016, 46, 443.
[29] Sun, Y.; Li, X.; Cao, J.; Zhang, W.; Wang, H. P. Adv. Colloid Interface 2006, 120, 47.
[30] Li, S.; Yan, W.; Zhang, W. Green Chem. 2009, 11, 1618.
[31] Yan, W.; Lien, H.; Koel, B. E.; Zhang, W. Environ. Sci.: Processes & Impacts. 2013, 15, 63.
[32] Stefaniuk, M.; Oleszczuk, P.; Ok, Y. S. Chem. Eng. J. 2016, 287, 618.
[33] Bae, S.; Gim, S.; Kim, H.; Hanna, K. Appl. Catal. B-Environ. 2016, 182, 541.
[34] Sun, Y.; Li, X.; Cao, J.; Zhang, W.; Wang, H. P. Adv. Colloid Interface 2006, 120, 47.
[35] Chen, S.; Hsu, H.; Li, C. J. Nanopart. Res. 2004, 6, 639.
[36] Yoo, B.; Hernandez, S. C.; Koo, B.; Rheem, Y.; Myung, N. V. Water Sci. Technol. 2007, 55, 149.
[37] Crane, R. A.; Scott, T. B. J. Hazard Mater. 2012, 211, 112.
[38] Machado, S.; Grosso, J. P.; Nouws, H.; Albergaria, J. T.; Delerue-Matos, C. Sci. Total Environ. 2014, 496, 233.
[39] Machado, S.; Pinto, S. L.; Grosso, J. P.; Nouws, H.; Albergaria, J. T.; Delerue-Matos, C. Sci. Total Environ. 2013, 445, 1.
[40] Mystrioti, C.; Xanthopoulou, T. D.; Tsakiridis, P. E.; Papassiopi, N.; Xenidis, A. Sci. Total Environ. 2016, 539, 105.
[41] Hoag, G. E.; Collins, J. B.; Holcomb, J. L.; Hoag, J. R.; Nadagouda, M. N.; Varma, R. S. J. Mater. Chem. 2009, 19, 8671.
[42] Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Sci. Total Environ. 2014, 466, 210.
[43] Machado, S.; Stawiński, W.; Slonina, P.; Pinto, A. R.; Grosso, J. P.; Nouws, H.; Albergaria, J. T.; Delerue-Matos, C. Sci. Total Environ. 2013, 461, 323.
[44] Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R. D.; Lowry, G. V. Environ. Sci. Technol. 2007, 41, 284.
[45] Huang, P.; Ye, Z.; Xie, W.; Chen, Q.; Li, J.; Xu, Z.; Yao, M. Water Res. 2013, 47, 4050.
[46] Ponder, S. M.; Darab, J. G.; Bucher, J.; Caulder, D.; Craig, I.; Davis, L.; Edelstein, N.; Lukens, W.; Nitsche, H.; Rao, L. Chem. Mater. 2001, 13, 479.
[47] Wei, Y.; Wu, S.; Yang, S.; Che, C.; Lien, H.; Huang, D. J. Hazard. Mater. 2012, 211, 373.
[48] Yan, W.; Herzing, A. A.; Li, X.; Kiely, C. J.; Zhang, W. Environ. Sci. Technol. 2010, 44, 4288.
[49] Liu, T.; Yang, X.; Wang, Z.; Yan, X. Water Res. 2013, 47, 6691.
[50] Kanel, S. R.; Choi, H. Water Sci. Technol. 2007, 55, 157.
[51] Kanel, S. R.; Goswami, R. R.; Clement, T. P.; Barnett, M. O.; Zhao, D. Environ. Sci. Technol. 2007, 42, 896.
[52] Jin, X.; Zhuang, Z.; Yu, B.; Chen, Z.; Chen, Z. Carbonhyd. Polym. 2016, 136, 1085.
[53] Li, J.; Li, H.; Zhu, Y.; Hao, Y.; Sun, X.; Wang, L. Appl. Surf. Sci. 2011, 258, 657.
[54] Wei, Y.; Wu, S.; Yang, S.; Che, C.; Lien, H.; Huang, D. J. Hazard. Mater. 2012, 211, 373.
[55] Sirk, K. M.; Saleh, N. B.; Phenrat, T.; Kim, H.; Dufour, B.; Ok, J.; Golas, P. L.; Matyjaszewski, K.; Lowry, G. V.; Tilton, R. D. Environ. Sci. Technol. 2009, 43, 3803.
[56] Li, Z.; Wang, L.; Yuan, L.; Xiao, C.; Mei, L.; Zheng, L.; Zhang, J.; Yang, J.; Zhao, Y.; Zhu, Z. J. Hazard. Mater. 2015, 290, 26.
[57] Popescu Ho?tuc, I.; Filip, P.; Humelnicu, D.; Humelnicu, I.; Scott, T. B.; Crane, R. A. J. Nucl. Mater. 2013, 443, 250.
[58] Liu, M.; Wang, Y.; Chen, L.; Zhang, Y.; Lin, Z. ACS Appl. Mater. Inter. 2015, 7, 7961.
[59] Jiang, Z.; Lv, L.; Zhang, W.; Du, Q.; Pan, B.; Yang, L.; Zhang, Q. Water Res. 2011, 45, 2191.
[60] Xiao, J.; Gao, B.; Yue, Q.; Sun, Y.; Kong, J.; Gao, Y.; Li, Q. J. Taiwan. Inst. Chem. E 2015, 55, 152.
[61] Xiao, J.; Gao, B.; Yue, Q.; Gao, Y.; Li, Q. Chem. Eng. J. 2015, 262, 1226.
[62] Baikousi, M.; Georgiou, Y.; Daikopoulos, C.; Bourlinos, A. B.; Filip, J.; Zbo?il, R.; Deligiannakis, Y.; Karakassides, M. A. Carbon 2015, 93, 636.
[63] Qiu, X.; Fang, Z.; Liang, B.; Gu, F.; Xu, Z. J. Hazard. Mater. 2011, 193, 70.
[64] Sheng, G.; Alsaedi, A.; Shammakh, W.; Monaquel, S.; Sheng, J.; Wang, X.; Li, H.; Huang, Y. Carbon 2016, 99, 123.
[65] Li, J.; Chen, C.; Zhang, R.; Wang, X. Chem. Asian J. 2015, 10, 1410.
[66] Huang, G. J.; Chen, Z. G.; Li, M. D.; Yang, B. Acta Chim. Sinica 2016, 74, 789. (黄国家, 陈志刚, 李茂东, 杨波, 化学学报, 2016, 74, 789.)
[67] Zhao, D. M.; Li, Z. W.; Liu, L. D. Acta Chim. Sinica 2014, 72, 185. (赵冬梅, 李振伟, 刘领弟, 化学学报, 2014, 72, 185.)
[68] Lai, C. W.; Sun, Y.; Yang, H. Acta Chim. Sinica 2013, 71, 1201. (来常伟, 孙莹, 杨洪, 化学学报, 2013, 71, 1201.)
[69] Üzüm, Ç.; Shahwan, T.; Ero?lu, A. E.; Hallam, K. R.; Scott, T. B.; Lieberwirth, I. Appl. Clay Sci. 2009, 43, 172.
[70] Chen, Z.; Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. J. Colloid Interface Sci. 2013, 398, 59.
[71] Kim, S. A.; Kamala-Kannan, S.; Lee, K.; Park, Y.; Shea, P. J.; Lee, W.; Kim, H.; Oh, B. Chem. Eng. J. 2013, 217, 54.
[72] Bhowmick, S.; Chakraborty, S.; Mondal, P.; Van Renterghem, W.; Van den Berghe, S.; Roman-Ross, G.; Chatterjee, D.; Iglesias, M. Chem. Eng. J. 2014, 243, 14.
[73] Zhang, Y.; Li, Y.; Li, J.; Hu, L.; Zheng, X. Chem. Eng. J. 2011, 171, 526.
[74] Li, Y.; Zhang, Y.; Li, J.; Sheng, G.; Zheng, X. Chemosphere 2013, 92, 368.
[75] Zhang, Y.; Li, Y.; Zheng, X. Sci. Total Environ. 2011, 409, 625.
[76] Li, Y.; Zhang, Y.; Li, J.; Zheng, X. Environ. Pollut. 2011, 159, 3744.
[77] Yuan, N.; Zhang, G.; Guo, S.; Wan, Z. Ultrason. Sonochem. 2016, 28, 62.
[78] Chrysochoou, M.; Johnston, C. P.; Dahal, G. J. Hazard. Mater. 2012, 201, 33.
[79] Li, Y.; Cheng, W.; Sheng, G.; Li, J.; Dong, H.; Chen, Y.; Zhu, L. Appl. Catal. B Environ. 2015, 174, 329.
[80] Lin, Y.; Chen, Z.; Chen, Z.; Megharaj, M.; Naidu, R. Appl. Clay Sci. 2014, 93, 56.
[81] Chen, Z.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. J. Colloid. Interf. Sci. 2011, 363, 601.
[82] Kanel, S. R.; Choi, H. Water Sci. Technol. 2007, 55, 157.
[83] Xiao, J.; Gao, B.; Yue, Q.; Gao, Y.; Li, Q. Chem. Eng. J. 2015, 262, 1226.
[84] Kanel, S. R.; Goswami, R. R.; Clement, T. P.; Barnett, M. O.; Zhao, D. Environ. Sci. Technol. 2007, 42, 896.
[85] Lee, Y.; Kim, C.; Lee, J.; Shin, H.; Yang, J. Desalin. Water Treat. 2009, 10, 33.
[86] Dong, H.; Lo, I. M. C. Water Res. 2013, 47, 2489.
[87] Liu, Q.; Bei, Y.; Zhou, F. Cent. Eur. J. Chem. 2009, 7, 79.
[88] Su, Y.; Adeleye, A. S.; Huang, Y.; Sun, X.; Dai, C.; Zhou, X.; Zhang, Y.; Keller, A. A. Water Res. 2014, 63, 102.
[89] Li, J.; Chen, C.; Zhang, R.; Wang, X. Chem. Asian J. 2015, 10, 1410.
[90] Sheng, G.; Alsaedi, A.; Shammakh, W.; Monaquel, S.; Sheng, J.; Wang, X.; Li, H.; Huang, Y. Carbon 2016, 99, 123.
[91] Wang, Q.; Qian, H.; Yang, Y.; Zhang, Z.; Naman, C.; Xu, X. J. Contam. Hydrol. 2010, 114, 35.
[92] Hoch, L. B.; Mack, E. J.; Hydutsky, B. W.; Hershman, J. M.; Skluzacek, J. M.; Mallouk, T. E. Environ. Sci. Technol. 2008, 42, 2600.
[93] Xiao, J.; Gao, B.; Yue, Q.; Gao, Y.; Li, Q. Chem. Eng. J. 2015, 262, 1226.
[94] Xiao, J.; Gao, B.; Yue, Q.; Sun, Y.; Kong, J.; Gao, Y.; Li, Q. J. Taiwan. Inst. Chem. E 2015, 55, 152.
[95] Shu, H.; Chang, M.; Chen, C.; Chen, P. J. Hazard. Mater. 2010, 184, 499.
[96] Sun, Y.; Ding, C.; Cheng, W.; Wang, X. J. Hazard. Mater. 2014, 280, 399.
[97] Cao, X. Y.; Li, L.; Chen, H. Acta Chim. Sinica 2010, 68, 1461. (曹向宇, 李垒, 陈灏, 化学学报, 2010, 68, 1461.)
[98] Crane, R. A.; Scott, T. J. Nanopart. Res. 2014, 16, 1.
[99] Wang, L. P.; Wang, Y. P. Acta Chim. Sinica 2007, 65, 737. (王利平, 王云普, 化学学报, 2007, 65, 737.)
[100] Sheng, G.; Shao, X.; Li, Y.; Li, J.; Dong, H.; Cheng, W.; Gao, X.; Huang, Y. J. Phys. Chem. A 2014, 118, 2952.
[101] Xu, J.; Li, Y.; Jing, C.; Zhang, H.; Ning, Y. J. Radioanal. Nucl. Ch. 2014, 299, 329.
[102] Sheng, G.; Yang, P.; Tang, Y.; Hu, Q.; Li, H.; Ren, X.; Hu, B.; Wang, X.; Huang, Y. Appl. Catal. B-Environ. 2016, 193, 189.
[103] Hu, B.; Ye, F.; Ren, X.; Zhao, D.; Sheng, G.; Li, H.; Ma, J.; Wang, X.; Huang, Y. Environ. Sci. Nano 2016, 3, 1460.
[104] O Carroll, D.; Sleep, B.; Krol, M.; Boparai, H.; Kocur, C. Adv. Water Res. 2013, 51, 104.
[105] Li, X.; Zhang, M.; Liu, Y.; Li, X.; Liu, Y.; Hua, R.; He, C. Water Qual. Expo. Health. 2013, 5, 31.
[106] Zhang, Z.; Liu, J.; Cao, X.; Luo, X.; Hua, R.; Liu, Y.; Yu, X.; He, L.; Liu, Y. J. Hazard. Mater. 2015, 300, 633.
[107] Nurmi, J. T.; Tratnyek, P. G.; Sarathy, V.; Baer, D. R.; Amonette, J. E.; Pecher, K.; Wang, C.; Linehan, J. C.; Matson, D. W.; Penn, R. L. Environ. Sci. Technol. 2005, 39, 1221.
[108] Zhang, W. J. Nanopart. Res. 2003, 5, 323.
[109] Wang, C.; Zhang, W. Environ. Sci. Technol. 1997, 31, 2154.
[110] Yan, S.; Hua, B.; Bao, Z.; Yang, J.; Liu, C.; Deng, B. Environ. Sci. Technol. 2010, 44, 7783.
[111] Dror, I.; Jacov, O. M.; Cortis, A.; Berkowitz, B. ACS Appl. Mater. Inter. 2012, 4, 3416.
[112] Li, Y.; Li, J.; Zhang, Y. J. Hazard. Mater. 2012, 227, 211.
[113] Liu, D. Q.; Liu, S. R.; Wang, C. F. J. Synthetic Crystals. 2016, 45, 1328. (刘大前, 刘峙嵘, 王长福, 人工晶体学报, 2016, 45, 1328.)
[114] Gao, F.; Zhang, W. M.; Guo, Y. D. China Ceramics. 2015, 51, 10. (高芳, 张卫民, 郭亚丹, 中国陶瓷, 2015, 51, 10.)
[115] Ding, C.; Cheng, W.; Sun, Y.; Wang, X. Geochim. Cosmochim. Acta 2015, 165, 86.
[116] Ling, L.; Zhang, W. J. Am. Chem. Soc. 2015, 137, 2788.
[117] Bai, B.; Fang, Y.; Gan, Q.; Yang, Y.; Yuan, L.; Feng, W. Chin. J. Chem. 2015, 33, 361.

文章导航

/