研究展望

金催化去芳构化反应研究进展

  • 吴文挺 ,
  • 张立明 ,
  • 游书力
展开
  • a. 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032;
    b. 美国加州大学圣巴巴拉分校 化学与生物化学系 加利福尼亚州圣芭芭拉市 93106

收稿日期: 2017-02-13

  网络出版日期: 2017-04-12

基金资助

项目受科技部国家重点研发项目(2016YFA0202900)、国家基础研究计划(973项目2015CB856600)、国家自然科学基金委(21332009,21421091)、中国科学院战略性先导项目(XDB20000000)、中国科学院前沿科学重点研究项目(QYZDY-SSW-SLH012)和中国科学院国家外国专家局创新团队国际合作伙伴计划资助.

Recent Progress on Gold-catalyzed Dearomatization Reactions

  • Wu Wen-Ting ,
  • Zhang Liming ,
  • You Shu-Li
Expand
  • a. State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    b. Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106

Received date: 2017-02-13

  Online published: 2017-04-12

Supported by

Project supported by the National Key Research and Development Program of China (2016YFA0202900), National BasicResearch Program of China (973 Program 2015CB856600), the NSFC (21332009, 21421091), Key Research and Development Program of Bureau of Frontier Sciences and Education Chinese Academy of Sciences (QYZDY-SSW-SLH012), and the Strategic Priority Research Program of the Chinese Academyof Sciences (XDB20000000) for generous financial support.

摘要

均相金催化在过去十几年经历了飞速的发展,展现出了非常高的催化效率和非常强的官能团兼容性.另一方面,催化去芳构化反应能够直接高效地将芳香化合物转化为高度官能团化的具有丰富三维立体结构的分子.因此,金催化去芳构化反应将会为天然产物和复杂分子的合成提供新颖直接高效的路径.本文总结了近几年金催化去芳构化反应的例子,主要可分为金催化的重排反应和炔烃/联烯的氢-官能团化反应两方面,同时还介绍了这两类反应的特点与可能的反应机理.

本文引用格式

吴文挺 , 张立明 , 游书力 . 金催化去芳构化反应研究进展[J]. 化学学报, 2017 , 75(5) : 419 -438 . DOI: 10.6023/A17020049

Abstract

Homogeneous gold catalysis has experienced rapid development since 2004 and generally exhibited high efficiency and good functional group tolerance. On the other hand, catalytic dearomatization reactions provide a unique and straight approach to the construction of highly functionalized molecules with diverse three-dimensional structures from simple aromatic compounds. In this perspective, recent examples on gold-catalyzed dearomatization reactions are summarized in two main categories: gold-catalyzed rearrangements and gold-catalyzed hydrofunctionalizations of alkynes and allenes. In the first category, intra- and inter- molecular dearomatization reactions were achieved via gold-catalyzed rearrangements of propargylic ester and its derivatives. Although this area is still at its early stage, several outstanding asymmetric examples have been reported by Shi and Toste. In the second category, an array of dearomatization reactions via gold-catalyzed hydrofunctionalizations of alkynes and allenes were presented. All these cases have shown great potentials for convenient and straightforward construction of spiro and/or bridged polycyclic molecules, and some of them have exhibited excellent enantioselectivity. In addition, salient features and proposed mechanisms for these two types of reactions are also described.

参考文献

[1] Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405.
[2] (a) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998, 37, 1415;
(b) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. 2002, 41, 4563.
[3] For recent books: (a) Toste, F. D.; Michelet, V. Gold Catalysis: An Homogeneous Approach, Imperial College Press, London, 2014;
(b) Slaughter, L. M. Homogeneous Gold Catalysis, Springer, 2015;
(c) Rappoport, Z.; Liebman, J. F.; Marek, I. The Chemistry of Organogold Compounds, Wiley, Chichester, 2014.
[4] For recent reviews: (a) Hashmi, A. S. K. Acc. Chem. Res. 2014, 47, 864;
(b) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966;
(c) Zhang, L. Acc. Chem. Res. 2014, 47, 877;
(d) Wang, Y.-M.; Lackner, A. D.; Toste, F. D. Acc. Chem. Res. 2014, 47, 889;
(e) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902;
(f) Zhang, D.-H.; Tang, X.-Y.; Shi, M. Acc. Chem. Res. 2014, 47, 913;
(g) Yang, W.; Hashmi, A. S. K. Chem. Soc. Rev. 2014, 43, 2941;
(h) Xie, J.; Pan, C.; Abdukader, A.; Zhu, C. Chem. Soc. Rev. 2014, 43, 5245;
(i) Muratore, M. E.; Homs, A.; Obradors, C.; Echavarren, A. M. Chem. Asian J. 2014, 9, 3066;
(j) Inamdar, S. M.; Konala, A.; Patil, N. T. Chem. Commun. 2014, 50, 15124;
(k) Obradors, C.; Echavarren, A. M. Chem. Commun. 2014, 50, 16;
(l) Gu, P.; Xu, Q.; Shi, M. Tetrahedron Lett. 2014, 55, 577;
(m) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677;
(n) Joost, M.; Amgoune, A.; Bourissou, D. Angew. Chem., Int. Ed. 2015, 54, 15022;
(o) Jia, M.; Bandini, M. ACS Catal. 2015, 5, 1638;
(p) Debrouwer, W.; Heugebaert, T. S. A.; Roman, B. I.; Stevens, C. V. Adv. Synth. Catal. 2015, 357, 2975;
(q) Goodwin, J. A.; Aponick, A. Chem. Commun. 2015, 51, 8730;
(r) Dorel, R.; Echavarren, A. M. J. Org. Chem. 2015, 80, 7321;
(s) Ranieri, B.; Escofet, I.; Echavarren, A. M. Org. Biomol. Chem. 2015, 13, 7103;
(t) Wei, F.; Song, C.; Ma, Y.; Zhou, L.; Tung, C.-H.; Xu, Z. Sci. Bull. 2015, 60, 1479;
(u) Liu, L.; Zhang, J. Chem. Soc. Rev. 2016, 45, 506;
(v) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448;
(w) Zi, W.; Dean, T. F. Chem. Soc. Rev. 2016, 45, 4567;
(x) Li, Y.; Li, W.; Zhang, J. Chem. Eur. J. 2017, 23, 467.
[5] (a) Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766;
(b) Alcaide, B.; Almendros, P.; Alonso, J. M. Molecules 2011, 16, 7815;
(c) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448;
(d) Barbour, P. M.; Marholz, L. J.; Chang, L.; Xu, W.; Wang, X. Chem. Lett. 2014, 43, 572;
(e) Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953;
(f) Füerstner, A. Angew. Chem., Int. Ed. 2014, 53, 8587;
(g) Füerstner, A. Acc. Chem. Res. 2014, 47, 925;
(h) Zhang, Y.; Luo, T.; Yang, Z. Nat. Prod. Rep. 2014, 31, 489;
(i) Pflästerer, D.; Hashmi, A. S. K. Chem. Soc. Rev. 2016, 45, 1331.
[6] Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395.
[7] For a recent book: (a) Hashmi, A. S. K.; Toste, D. F.; Toste, F. D. Modern Gold Catalyzed Synthesis, Wiley, 2012; For recent selected examples:
(b) Chen, B.; Yu, C.; Zhang, G. Chin. J. Org. Chem. 2015, 35, 625 (陈斌, 于丛军, 张国柱, 有机化学, 2015, 35, 625);
(c) Li, L.; Zhou, B.; Ye, L.-W. Chin. J. Org. Chem. 2015, 35, 655 (李龙, 周波, 叶龙武, 有机化学, 2015, 35, 655);
(d) Zhang, X.; Sun, X.; Cui, X.; Zhang, H. Chin. J. Org. Chem. 2015, 35, 1700 (张小祥, 孙小萍, 崔杏丽, 张海飞, 有机化学, 2015, 35, 1700);
(e) Zhang, X.; Sun, X.; Zhang, H.; Cui, X.; Ma, M. Chin. J. Org. Chem. 2015, 35, 1469 (张小祥, 孙小萍, 张海飞, 崔杏丽, 马猛涛, 有机化学, 2015, 35, 1469);
(f) Li, X.-L.; Wang, J.-Q.; Li, L.; Yin, Y.-W.; Ye, L.-W. Acta Chim. Sinica. 2016, 74, 49 (李新玲, 王佳琪, 李龙, 尹应武, 叶龙武, 化学学报, 2016, 74, 49).
[8] For recent reviews: (a) Pape, A. R.; Kaliappan, K. P.; Kündig, E. P. Chem. Rev. 2000, 100, 2917;
(b) Zhuo, C.-X.; Zhang, W.; You, S.-L. Angew. Chem., Int. Ed. 2012, 51, 12662;
(c) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558;
(d) Wu, W.-T.; Zhang, L.; You, S.-L. Chem. Soc. Rev. 2016, 45, 1570;
(e) Sun, W.; Li, G.; Hong, L.; Wang, R. Org. Biomol. Chem. 2016, 14, 2164;
(f) Zheng, C.; You, S.-L. Chem. 2016, 1, 830; For recent selected examples:
(g) Duan, D.-H.; Yin, Q.; Wang, S.-G; Gu, Q.; You, S.-L. Acta Chim. Sinica. 2014, 72, 1001 (段德河, 殷勤, 王守国, 顾庆, 游书力, 化学学报, 2014, 72, 1001);
(h) Wang, Y.; Liu, R.; Gao, J.; Jia, Y. Chin. J. Org. Chem. 2017, 37, 691 (王永刚, 刘人荣, 高建荣, 贾义霞, 有机化学, 2017, 37, 691).
[9] (a) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994;
(b) Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2011, 47, 6536;
(c) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084;
(d) Qian, D.; Zhang, J. Chem. Rec. 2014, 14, 280;
(e) Wei, Y.; Shi, M. ACS Catal. 2016, 2515.
[10] Bandini, M. Chem. Soc. Rev. 2011, 40, 1358.
[11] Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804.
[12] Yang, J.-M.; Li, P.-H.; Wei, Y.; Tang, X.-Y.; Shi, M. Chem. Commun. 2016, 52, 346.
[13] Zi, W.; Wu, H.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 3225.
[14] Zhang, G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 1814.
[15] Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 12598.
[16] Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 11916.
[17] Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2014, 16, 3138.
[18] (a) Nevado, C.; Echavarren, A. M. Synthesis 2005, 167;
(b) Kitamura, T. Eur. J. Org. Chem. 2009, 2009, 1111;
(d) Yamamoto, Y. Chem. Soc. Rev. 2014, 43, 1575.
[19] Ferrer, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 1105.
[20] Ferrer, C.; Amijs, C. H. M.; Echavarren, A. M. Chem. Eur. J. 2007, 13, 1358.
[21] Zhang, Y.-Q.; Zhu, D.-Y.; Jiao, Z.-W.; Li, B.-S.; Zhang, F.-M.; Tu, Y.-Q.; Bi, Z. Org. Lett. 2011, 13, 3458.
[22] Cheng, B.; Huang, G.; Xu, L.; Xia, Y. Org. Biomol. Chem. 2012, 10, 4417.
[23] Xu, W.; Wang, W.; Wang, X. Angew. Chem., Int. Ed. 2015, 54, 9546.
[24] Nishiyama, D.; Ohara, A.; Chiba, H.; Kumagai, H.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2016, 18, 1670.
[25] Zhang, L.; Wang, Y.; Yao, Z. J.; Wang, S.; Yu, Z.-X. J. Am. Chem. Soc. 2015, 137, 13290.
[26] Nemoto, T.; Matsuo, N.; Hamada, Y. Adv. Synth. Catal. 2014, 356, 2417.
[27] Aparece, M. D.; Vadola, P. A. Org. Lett. 2014, 16, 6008.
[28] Wu, W.-T.; Xu, R.-Q.; Zhang, L.; You, S.-L. Chem. Sci. 2016, 7, 3427.
[29] Liu, Y.; Xu, W.; Wang, X. Org. Lett. 2010, 12, 1448.
[30] Noey, E. L.; Wang, X.; Houk, K. N. J. Org. Chem. 2011, 76, 3477.
[31] Podoll, J. D.; Liu, Y.; Chang, L.; Walls, S.; Wang, W.; Wang, X. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 15573.
[32] Barbour, P. M.; Podoll, J. D.; Marholz, L. J.; Wang, X. Bioorg. Med. Chem. Lett. 2014, 24, 5602.
[33] Chang, L.; Podoll, J. D.; Wang, W.; Walls, S.; O'Rourke, C. P.; Wang, X. J. Med. Chem. 2014, 57, 3803.
[34] Barbour, P. M.; Wang, W.; Chang, L.; Pickard, K. L.; Rais, R.; Slusher, B. S.; Wang, X. Adv. Synth. Catal. 2016, 358, 1482.
[35] Cera, G.; Crispino, P.; Monari, M.; Bandini, M. Chem. Commun. 2011, 47, 7803.
[36] Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9533.
[37] Cera, G.; Chiarucci, M.; Bandini, M. Pure Appl. Chem. 2012, 84, 1673.
[38] Cera, G.; Chiarucci, M.; Mazzanti, A.; Mancinelli, M.; Bandini, M. Org. Lett. 2012, 14, 1350.
[39] Zheng, N.; Chang, Y.-Y.; Zhang, L.-J.; Gong, J.-X.; Yang, Z. Chem. Asian J. 2016, 11, 371.
[40] Modha, S. G.; Kumar, A.; Vachhani, D. D.; Jacobs, J.; Sharma, S. K.; Parmar, V. S.; Van Meervelt, L.; Van der Eycken, E. V. Angew. Chem., Int. Ed. 2012, 51, 9572.
[41] Modha, S. G.; Vachhani, D. D.; Jacobs, J.; Van Meervelt, L.; Van der Eycken, E. V. Chem. Commun. 2012, 48, 6550.
[42] Kumar, A.; Vachhani, D. D.; Modha, S. G.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Beilstein J. Org. Chem. 2013, 9, 2097.
[43] Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Angew. Chem., Int. Ed. 2015, 54, 7862.
[44] 审稿人认为N上炔丙基的迁移在形式上更倾向于[3,3]-重排的过程.
[45] Shibuya, T.; Noguchi, K.; Tanaka, K. Angew. Chem., Int. Ed. 2012, 51, 6219.
[46] Oka, J.; Okamoto, R.; Noguchi, K.; Tanaka, K. Org. Lett. 2015, 17, 676.
[47] Baba, T.; Oka, J.; Noguchi, K.; Tanaka, K. Eur. J. Org. Chem. 2015, 2015, 4374.
[48] Jia, M.; Cera, G.; Perrotta, D.; Monari, M.; Bandini, M. Chem. Eur. J. 2014, 20, 9875.
[49] Shen, Z.-Q.; Li, X.-X.; Shi, J.-W.; Chen, B.-L.; Chen, Z. Tetrahedron Lett. 2015, 56, 4080.
[50] Jia, M.; Monari, M.; Yang, Q.-Q.; Bandini, M. Chem. Commun. 2015, 51, 2320.
[51] Ocello, R.; De Nisi, A.; Jia, M.; Yang, Q.-Q.; Monari, M.; Giacinto, P.; Bottoni, A.; Miscione, G. P.; Bandini, M. Chem. Eur. J. 2015, 21, 18445.
[52] Pirovano, V.; Decataldo, L.; Rossi, E.; Vicente, R. Chem. Commun. 2013, 49, 3594.
[53] Wang, Y.; Zhang, P.; Liu, Y.; Xia, F.; Zhang, J. Chem. Sci. 2015, 6, 5564.

文章导航

/