研究论文

高倍率球形锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的制备及其电化学性能研究

  • 郑卓 ,
  • 吴振国 ,
  • 向伟 ,
  • 郭孝东
展开
  • a. 四川大学高分子研究所 成都 610065;
    b. 四川大学化学工程学院 成都 610065;
    c. 成都理工大学材料与化学化工学院 成都 610065

收稿日期: 2016-11-10

  网络出版日期: 2017-04-25

基金资助

项目受国家自然科学基金(No.21506133)资助.

Preparation and Electrochemical Performance of High Rate Spherical Layered LiNi0.5Co0.2Mn0.3O2 Cathode Material for Lithium-Ion Batteries

  • Zheng Zhuo ,
  • Wu Zhenguo ,
  • Xiang Wei ,
  • Guo Xiaodong
Expand
  • a. Polymer Research Institute, Sichuan University, Chengdu 610065;
    b. School of Chemical Engineering, Sichuan University, Chengdu 610065;
    c. College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610065

Received date: 2016-11-10

  Online published: 2017-04-25

Supported by

Project supported by the National Natural Science Foundation of China (No. 21506133).

摘要

采用碳酸盐共沉淀-高温固相法制备得到了颗粒平均尺寸约5 μm振实密度为2.1 g·cm-3的均匀微球形高镍LiNi0.5Co0.2Mn0.3O2材料.X射线衍射(XRD)分析和透射电镜(TEM)结果表明这种微球状LiNi0.5Co0.2Mn0.3O2材料具有完善的层状α-NaFeO2结构,过渡金属层原子呈[√3×√3]R30°排布.电化学性能测试结果证实了该材料具有优异的循环稳定性和高倍率性能.具体而言,在2.7~4.3 V,1C下循环100次后的放电比容量为150 mAh·g-1,容量保持率为94.6%,在30C的超高倍率下,放电比容量还能达到96 mAh·g-1.同时,该材料的储能能力也非常突出,在0.1C时比能量密度为687.83 Wh·kg-1(体积能量密度为1444.45 Wh·L-1),在30C时仍达335.27 Wh·kg-1(体积能量密度为704.07 Wh·L-1),非常有潜力应用于商业化高能量密度锂离子电池.

本文引用格式

郑卓 , 吴振国 , 向伟 , 郭孝东 . 高倍率球形锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的制备及其电化学性能研究[J]. 化学学报, 2017 , 75(5) : 501 -507 . DOI: 10.6023/A16110594

Abstract

Layered Ni-rich compound LiNi0.5Co0.2Mn0.3O2 has drawn considerable attention recently because high Ni content contributes to the improvement of specific capacity and the reduction of cost. However, it is a challenge to obtain the Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode with both high rate performance and high tap density because the rate capability is often improved at the expense of volumetric energy density, which is mostly dependent on the tap density. In our work, an uniform Ni-rich LiNi0.5Co0.2Mn0.3O2 microsphere with an average diameter of ca. 5 μm and tap density of 2.1 g·cm-3 was successfully prepared using carbonate co-precipitation method, which can meet the commercial requirement for lithium-ion batteries (tap density≥2.1 g·cm-3, Lithium Nickel Cobalt Manganese Oxides from CETC International Co., Ltd). In this synthetic route, the 2 mol·L-1 mixture of NiSO4·6H2O, MnSO4·H2O and CoSO4·7H2O (Ni:Co:Mn=5:2:3, molar ratio) are the starting materials, 2 mol·L-1 Na2CO3 and 4 mol·L-1 NH3·H2O are the precipitant and chelating agent, respectively. In order to achieve high tap density, the stirring speed of continuous stirred tank reactor (CSTR) is as high as 1500 r/min, and the powder was preheated at 550 ℃ for 6 h and then calcined at 850 ℃ for 14 h in flowing oxygen. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) results indicate that the microsphere LiNi0.5Co0.2Mn0.3O2 material has a well-ordered α-NaFeO2 structure with stable in-plane [√3×√3]R30° ordering in the transition-metal layers. Electrochemical results also confirm that this cathode has excellent cycling stability and high rate capability. Specifically, it exhibits a discharge capacity of 150 mAh·g-1 between 2.7 and 4.3 V at 1C after 100 cycles, with outstanding capacity retention of 94.6%. At 30C rate, it can still deliver a high discharge capacity of 96 mAh·g-1. Meanwhile, the energy storage capacity for this cathode is also encouraging. At 0.1C rate, the specific energy (Es) is 687.83 Wh·kg-1 (volumetric energy density is 1444.45 Wh·L-1); at 30C rate, the specific energy (Es) is 335.27 Wh·kg-1 (volumetric energy density is 704.07 Wh·L-1). These excellent features will make this microsphere LiNi0.5Co0.2Mn0.3O2 material as a potential positive electrode material for commercial high energy density lithium-ion batteries.

参考文献

[1] Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
[2] Dunn, B.; Kamath, H.; Tarascon, J. M. Sience 2011, 334, 928.
[3] Mahmood, N.; Zhang, C. Z.; Yin, H.; Hou, Y. L. J. Mater. Chem. A 2014, 2, 15.
[4] Yu, X. Q.; Lyu, Y. C.; Gu, L.; Wu, H. M.; Bak, S. M.; Zhou, Y. N.; Amine, K.; Ehrlich, S. N.; Li, H.; Nam, K. W.; Yang, X. Q. Adv. Energy Mater. 2014, 4, 1300950.
[5] Lv, Z. Y.; Feng, R.; Zhao, J.; Fan, H.; Xu, D.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2015, 73, 1013. (吕之阳, 冯瑞, 赵进, 范豪, 徐丹, 吴强, 杨立军, 陈强, 王喜章, 胡征, 化学学报, 2015, 73, 1013.)
[6] Qiu, Z. P.; Zhang, Y. J.; Xia, S. B.; Dong, P. Acta Chim. Sinica 2015, 73, 992. (邱振平, 张英杰, 夏书标, 董鹏, 化学学报, 2015, 73, 992.)
[7] Bi, Y.; Yang, W.; Du, R.; Zhou, J.; Liu, M.; Liu, Y.; Wang, D. J. Power Sources 2015, 283, 211.
[8] Kim, Y. ACS Appl. Mater. Interfaces 2012, 4, 2329.
[9] Lin, H. C.; Yang, Y. Acta Chim. Sinica 2009, 67, 104. (林和成, 杨勇, 化学学报, 2009, 67, 104.)
[10] Sun, Y. K.; Myung, S. T.; Park, B. C.; Prakash, J.; Belharouak, I.; Amine, K. Nat. Mater. 2009, 8, 320.
[11] Cho, J.; Jung, H.; Park, Y.; Kim, G.; Lim, H. S. J. Electrochem. Soc. 2000, 147, 15.
[12] Abraham, D. P.; Twesten, R. D.; Balasubramanian, M.; Petrov, I.; McBreen, J.; Amine, K. Electrochem. Commun. 2002, 4, 620.
[13] Woo, S. U.; Yoon, C. S.; Amine, K.; Belharouak, I.; Sun, Y. K. J. Electrochem. Soc. 2007, 154, A1005.
[14] Lin, B.; Wen, Z.; Gu, Z.; Huang, S. J. Power Sources 2008, 175, 564.
[15] Whitfield, P. S.; Davidson, I. J.; Cranswick, L. M. D.; Swainson, I. P.; Stephens, P. W. Solid State Ionics 2005, 176, 463.
[16] Li, W. W.; Li, L.; Yang, L. Nonferrous Met. 2014, 7, 53. (李伟伟, 李丽, 杨理, 有色金属(冶炼部分), 2014, 7, 53.)
[17] Kong, J. Z.; Zhai, H. F.; Ren, C.; Gao, M. Y.; Zhang, X.; Li, H.; Li, J. X.; Tang, Z.; Zhou, F. J. Alloys Compd. 2013, 577, 507.
[18] Xie, L. S.; Lin, Q. Q.; Li, H. C.; Wang, Z. G.; Wang, C. F.; Hu, M. C.; Huang, R. H. Mater. Sci. 2017, 7, 72.
[19] Li, Y. J.; Han, Q.; Ming, X. Q.; Ren, M. M.; Li, L.; Ye, W. Q.; Zhang, X. Z.; Xu, H.; Li, L. Ceram. Int. 2014, 40, 14933.
[20] Yang, Z. G.; Guo, X. D.; Xiang, W.; Hua, W. B.; Zhang, J.; He, F. R.; Wang, K.; Xiao, Y.; Zhong, B. H. J. Alloys Compd. 2017, 699, 358.
[21] Zhang, J. B.; Zhong, Y. J.; Shi, X. X.; Zheng, Z.; Hua, W. B.; Chen, Y. X.; Liu, W. Y.; Zhong, B. H. Chin. J. Chem. 2015, 33, 1303.
[22] Hua, W. B.; Wang, Y. J.; Zhong, Y. J.; Wang, G. P.; Zhong, B. H.; Fang, B. Z.; Guo, X. D.; Liao, S. X.; Wang, H. J. Chin. J. Chem. 2015, 33, 261.
[23] Ahn, W.; Lim, S. N.; Jung, K. N.; Yeon, S. H.; Kim, K. B.; Song, H. S.; Shin, K. H. J. Alloys Compd. 2014, 609, 143.
[24] Li, J.; Xiong, S.; Liu, Y.; Ju, Z.; Qian, Y. Nano Energy 2013, 2, 1249.
[25] Yabuuchi, N.; Koyama, Y.; Nakayama, N.; Ohzuku, T. J. Electrochem. Soc. 2005, 152, A1434.
[26] Gabrisch, H.; Yi, T.; Yazami, R. Electrochem. Solid-State Lett. 2008, 11, A119.
[27] Koyama, Y.; Tanaka, I.; Adachi, H.; Makimura, Y.; Ohzuku, T. J. Power Sources 2003, 119~121, 644.
[28] Zhu, Z.; Yan, H.; Zhang, D.; Li, W.; Lu, Q. J. Power Sources 2013, 224, 13.
[29] Shaju, K. M.; Bruce, P. G. Adv. Mater. 2006, 18, 2330.
[30] Wu, F.; Li, N.; Su, Y. F.; Shou, H. F.; Bao, L. Y.; Yang, W.; Zhang, L. J.; An, R.; Chen, S. Adv. Mater. 2013, 25, 3722.
[31] Striebel, K. A.; Sakai, E.; Cairns, E. J. J. Electrochem. Soc. 2002, 149, A61.
[32] Wang, L.; Zhao, J.; He, X.; Gao, J.; Li, J.; Wan, C.; Jiang, C. Int. J. Electrochem. Sci. 2012, 7, 345.
[33] Mai, L.; Li, S.; Dong, Y.; Zhao, Y.; Luo, Y.; Xu, H. Nanoscale 2013, 5, 4864.
[34] Li, B.; Han, C.; He, Y. B.; Yang, C.; Du, H.; Yang, Q. H.; Kang, F. Energy Environ. Sci. 2012, 5, 9595.
[35] Zhou, P. F.; Meng, H. J.; Zhang, Z.; Chen, C. C.; Lu, Y. Y.; Cao, J.; Cheng, F. Y.; Chen, J. J. Mater. Chem. A 2017, 5, 2724.

文章导航

/