红壤可变电荷矿物的酸碱缓冲能力及表面络合模型
收稿日期: 2017-02-15
网络出版日期: 2017-04-25
基金资助
项目受科技部红壤酸化973项目(2014CB441002)和国家自然科学基金委中英国际合作红壤关键带项目(41571130052)资助.
The Acid-Base Buffer Capacity of Red Soil Variable Charge Minerals and Its Surface Complexation Model
Received date: 2017-02-15
Online published: 2017-04-25
Supported by
Project supported by the "973" Program (2014CB441002) and the National Natural Science Foundation of China (41571130052).
氧化铁和高岭石是红壤中可变电荷的主要来源,对红壤的酸碱变化起到缓冲作用.本研究基于红壤矿物的表征和酸碱滴定实验结果,采用1-site/2-pK表面络合模型获得了其表面活性位点浓度Hs、密度Ds、酸碱平衡常数pKaint以及电荷零点pHpzc等相关参数,定量解析了氧化铁和高岭土的酸碱缓冲能力.结果表明:该模型能较好地适用于分析针铁矿、赤铁矿及高岭石的表面酸碱性质;针铁矿、高岭石表面活性位点浓度Hs较高,说明其对酸具有较好的缓冲效果.根据上述酸碱性质参数,模拟计算了不同pH下的矿物表面化学物种,揭示了矿物表面反应缓冲土壤酸碱变化的机制.采用上述酸碱滴定方法及模型计算方法,分析实际林地红壤样品的酸碱缓冲能力,并采用表面络合模型计算了其表面化学物种,验证了该方法用于林地红壤酸碱缓冲能力分析的可行性.
程鹏飞 , 王莹 , 程宽 , 李芳柏 , 秦好丽 , 刘同旭 . 红壤可变电荷矿物的酸碱缓冲能力及表面络合模型[J]. 化学学报, 2017 , 75(6) : 637 -644 . DOI: 10.6023/A17020056
Iron oxides and kaolinite are the main sources of variable charges in the red soil. As a result of being protonated and deprotonated under different acid-base conditions, the surface hydroxyl groups can buffer the pH changes of red soil. In this study, iron oxide and kaolinite were titrated by the standard HCl and NaOH solution through the auto potentiometric titration under the controlled pH=2.9~9.5, to study the surface charge of soil minerals. The X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and N2 desorption/adsorption isotherms (BET) were used to characterize the crystal structures, surface groups and specific surface areas of soil minerals. Based on the characterization data and titration curves, the acid-base properties of the minerals were analyzed by using 1-site/2-pK surface complexation model. The Gran plot method, commonly used to determine the equivalence points, was applied to calculate the concentration (Hs) and density (Ds) of the surface active sites on the soil minerals. The acid-base equilibrium constants (pKaint) of soil minerals were obtained by extrapolation and the corresponding pHpzc were calculated by the following formula:pHpzc=1/2 (pKa1int+pKa2int). The result of calculated value of pHpzc was nearly equal with the experimental value, which showed that it is feasible to apply this model calculation method on the soil minerals. In addition, the above parameters can explain the acid-base buffer capacity of the minerals quantitatively. The results show that goethite and kaolinite have the higher surface active site concentration. According to the parameters, the surface chemical speciation of minerals at different pH were calculated by Visual Minteq software with the double layer model (DLM) to explain the mechanism of acid-base buffer behavior on the mineral surfaces. Finally, the acid-base titration method and model calculation approach were also used to analyze the acid-base buffer capacity of the natural red soil samples. The feasibility of this method on the red soil was further verified. Then, the surface chemical species (≡SOH2+, ≡SO- and ≡SOH) of the red soil were calculated by surface complex model to further explain their acid-base buffer mechanism.
[1] Li, Q. K. Chinese Red Soil, Vol. 1~2, Eds.:Zhao, Q. G.; Shi, H.; Gong, Z. T., Science Press, Beijing, 1983, p. 1(in Chinese). (李庆逵, 中国红壤, 卷1~2, 编辑:赵其国, 石华, 龚子同, 科学出版社, 北京, 1983, p. 1.)
[2] Xiong, Y.; Li, Q. K. Chinese Soil, Science Press, Beijing, 1990, pp. 502~508(in Chinese). (熊毅, 李庆逵, 中国土壤, 科学出版社, 北京, 1990, pp. 502~508.)
[3] Brown, K. A. Water, Air, Soil Pollut. 1987, 32, 201.
[4] Liao, B.; Guo, Z.; Zeng, Q.; Probst, A.; Probst, J. Water, Air, Soil Pollut.:Focus 2007, 7, 151.
[5] Fu, L.; Wu, J.; Yang, Y.; Qiu, L. Environ. Sci. 1993, 14(1), 20(in Chinese). (傅柳松, 吴杰民, 杨影, 邱理均, 环境科学, 1993, 14(1), 20.)
[6] Zhao, Y.; Duan, L.; Xing, J.; Larssen, T.; Nielsen, C. P.; Hao, J. Environ. Sci. Technol. 2009, 43, 8021.
[7] Guo, J. H.; Liu, X. J.; Zhang, Y.; Shen, J. L.; Han, W. X.; Zhang, W. F.; Christie, P.; Goulding, K. W. T.; Vitousek, P. M.; Zhang, F. S. Science 2010, 327, 1008.
[8] Liao, B. H.; Dai, Z. H. Acta Sci. Circumstantiae 1991, 11, 425(in Chinese). (廖柏寒, 戴昭华, 环境科学学报, 1991, 11, 425.)
[9] Reuss, J.; Cosby, B.; Wright, R. Nature 1987, 329, 27.
[10] Wright, R.; Cosby, B.; Flaten, M.; Reuss, J. Nature 1990, 343, 53.
[11] Larssen, T.; Schnoor, J. L.; Seip, H. M.; Dawei, Z. Sci. Total Environ. 2000, 246, 175.
[12] Li, J. Y.; Wang, N.; Xu, R. K. Soils 2009, 41, 932(in Chinese). (李九玉, 王宁, 徐仁扣, 土壤, 2009, 41, 932.)
[13] Xu, R. K. Soils 2015, 47, 238(in Chinese). (徐仁扣, 土壤, 2015, 47, 238.)
[14] Alekseeva, T.; Alekseev, A.; Xu, R. K.; Zhao, A. Z.; Kalinin, P. Environ. Geochem. Health 2011, 33, 137.
[15] Dixon, J. B.; Weed, S. B.; Dinauer, R. C. Minerals in Soil Environments, 2nd ed., Eds.:Barnhisel, R. I.; Bertsch, P. M., SSSA, USA, 1989, Chapter 15, p. 729.
[16] Yu, T. R.; Chen, Z. C. The Chemical Process in the Soil, Vol. 14, Ed.:Chen, Z. C., Science Press, Beijing, 1990, p. 432(in Chinese). (于天仁, 陈志诚, 土壤发生中的化学过程, 卷14, 编辑:陈志诚, 科学出版社, 北京, 1990, p. 432.)
[17] Yu, T. R.; Wang, Z. Q. Soil Analytical Chemistry, Vol. 11, Eds.:Chen, J. F.; He, Q., Science Press, Beijing, 1987, p. 337(in Chinese). (于天仁, 王振权, 土壤分析化学, 卷11, 编辑:陈家坊, 何群, 科学出版社, 北京, 1987, p. 337.)
[18] Wang, X. G.; Li, F. B. Persistent Organic Pollutants Forum and National Symposium on Persistent Organic Pollutants, Eds.:Yu, G.; Huang, J.; Wang, B.; Liu, Y. C., Chinese Chemical Society, Beijing, 2006, pp. 215~223(in Chinese). (王旭刚, 李芳柏, 持久性有机污染物论坛暨持久性有机污染物全国学术研讨会, 编者:余刚, 黄俊, 王斌, 刘意成, 中国化学会, 北京, 2006, pp. 215~223.)
[19] Wang, X. G.; Sun, L. R.; Zeng, F.; Li, F. B. Res. Environ. Sci. 2009, 22(4), 60(in Chinese). (王旭刚, 孙丽蓉, 曾芳, 李芳柏, 环境科学研究, 2009, 22(4), 60.)
[20] Gao, S.; He, G. P.; Wu, H. H.; Sun, W. Y. Acta Petrol. Mineral. 2005, 24, 239(in Chinese). (高嵩, 何广平, 吴宏海, 孙伟亚, 岩石矿物学杂志, 2005, 24, 239.)
[21] Gao, Y.; Mucci, A. Geochim. Cosmochim. Acta 2001, 65, 2361.
[22] Tan, W. F; Zhou, S. Z.; Liu, F.; Feng, X. H.; Li, X. H. Soils 2007, 39(5), 726(in Chinese). (谭文峰, 周素珍, 刘凡, 冯雄汉, 李学垣, 土壤, 2007, 39(5), 726.)
[23] Xu, R. K.; Zhao, A. Z.; Jiang, J. Ecol. Environ. 2011, 20(10), 1395 (in Chinese). (徐仁扣, 赵安珍, 姜军, 生态环境学报, 2011, 20(10), 1395.)
[24] Yu, X. J.; Chou, R. L. Chongqing Environ. Sci. 1998, 20(3), 11(in Chinese). (于锡军, 仇荣亮, 重庆环境科学, 1998, 20(3), 11.)
[25] Stumm, W. Chemistry of the Solid-water Interface:Processes at the Mineral-water and Particle-water Interface in Natural Systems, John Wiley & Son Inc., New York, 1992. pp. 13~23.
[26] Tombácz, E.; Szekeres, M. Langmuir 2001, 17, 1411.
[27] Davis, J. A.; Leckie, J. O. J. Colloid Interface Sci. 1978, 67, 90.
[28] Cagnasso, M.; Boero, V.; Franchini, M. A.; Chorover, J. Colloids Surf., B 2010, 76, 456.
[29] Liu, T.; Li, X.; Li, F.; Zhang, W.; Chen, M.; Zhou, S. Colloids Surf., A 2011, 379(1), 143.
[30] Li, X.; Liu, T.; Li, F.; Zhang, W.; Zhou, S.; Li, Y. J. Soil. Sediment. 2012, 12(2), 217.
[31] Zhou, D. H.; Li, X. H.; Xu, F. L. J. Huazhong Agric. Univ. 1996, 15(2), 153(in Chinese). (周代华, 李学垣, 徐凤琳, 华中农业大学学报, 1996, 15(2), 153.)
[32] Liu, T.; Li, X.; Li, F.; Tao, L.; Liu, H. Soil Sci. 2014, 179, 468.
[33] Djomgoue, P.; Njopwouo, D. J. Surf. Eng. Mater. Adv. Technol. 2013, 3, 275.
[34] Saikia, B. J.; Parthasarathy, G. J. Mod. Phys. 2010, 1, 206.
[35] Lu, S. J.; Tan, W. F.; Liu, F.; Feng, X. H. Acta Pedol. Sin. 2006, 43(5), 756(in Chinese). (陆泗进, 谭文峰, 刘凡, 冯雄汉, 土壤学报, 2006, 43(5),756.)
[36] Szekeres, M.; Tombácz, E. Colloids Surf., A 2012, 414, 302.
[37] Jolsterå, R.; Gunneriusson, L.; Forsling, W. J. Colloid Interface Sci. 2010, 342, 493.
[38] Frini-Srasra, N.; Kriaa, A.; Srasra, E. Russ. J. Electrochem. 2007, 43, 795.
[39] Wu, Z. S.; Zhang, W. M.; Sun, Z. X. Acta Chim. Sinica 2010, 68(8), 769(in Chinese). (吴震生, 张卫民, 孙中溪, 化学学报, 2010, 68(8), 769.)
[40] Davis, J. A.; Kent, D. Rev. Mineral. Geochem. 1990, 23, 177.
[41] Kubicki, J. D.; Paul, K. W.; Kabalan, L.; Zhu, Q.; Mrozik, M. K.; Aryanpour, M.; Pierre-Louis, A. M.; Strongin, D. R. Langmuir 2012, 8, 14573.
[42] Cornell, R. M.; Schwertmann, U. The Iron Oxides:Structure, Properties, Reactions, Occurrences and Uses, John Wiley & Sons, 2003, pp. 221~223.
[43] Pagnanelli, F.; Bornoroni, L.; Toro, L. Environ. Sci. Technol. 2004, 38, 5443.
[44] Liu, T.; Li, X.; Waite, T. D. Environ. Sci. Technol. 2014, 48, 14564.
[45] Liu, T.; Li, X.; Waite, T. D. Environ. Sci. Technol. 2013, 47(13), 7350.
[46] Liu, T.; Li, X.; Waite, T. D. Environ. Sci. Technol. 2013, 47(23), 13712.
[47] Liu, T.; Li, X.; Zhang, W.; Hu, M.; Li, F. J. Colloid Interface Sci. 2014, 423, 25.
[48] Yanina, S. V.; Rosso, K. M. Science 2008, 320(5873), 218.
[49] Janusz, W.; Skwarek, E.; Zarko, V. I.; Gun'ko, V. M. Physicochem. Probl. Miner. Process. 2007, 41, 215.
[50] Pyman, M.; Bowden, J.; Posner, A. Soil Res. 1979, 17, 191.
[51] Yu, T. R.; Ji, G. L.; Ding, C. P. Electrochemical Behavior of Variable Charge Soils, Vol. 2, Eds.:Yu, T. R.; Zhao, A. Z., Science Press, Beijing, 1996, p. 9(in Chinese). (于天仁, 季国亮, 丁昌璞, 可变电荷土壤的电化学, 卷2, 编辑:于天仁, 赵安珍, 科学出版社, 北京, 1996, p. 9.)
/
〈 |
|
〉 |