综述

金属有机骨架材料在吸附分离研究中的应用进展

  • 张贺 ,
  • 李国良 ,
  • 张可刚 ,
  • 廖春阳
展开
  • a 中国科学院生态环境研究中心 环境化学与生态毒理学国家重点实验室 北京 100085;
    b 中国科学院大学 资源与环境学院 北京 100049;
    c 华北电力大学 环境科学与工程学院 保定 071003
张贺,中国科学院生态环境研究中心直博生.目前在环境化学与生态毒理学国家重点实验室参与国家重点研发计划"纳米材料治理水体复合污染的应用基础研究及工程示范"项目研究.主要研究方向为金属有机骨架材料(MOFs)的合成和应用;李国良,博士,中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室副研究员.主持国家自然科学基金,负责国家科技支撑计划、国家重点研发计划项目任务;张可刚,博士,任教于华北电力大学环境科学与工程系.近年来,主持国家自然科学基金项目1项,省部级项目1项,参与多项国家级项目研究,发表论文多篇;廖春阳,博士,中国科学院生态环境研究中心研究员,中央组织部"青年千人计划"入选者,国家"优秀青年基金"获得者.

收稿日期: 2017-04-18

  网络出版日期: 2017-09-04

基金资助

国家自然科学基金(Nos.21522706,21677167,21677159,21407047)、国家重点研发计划(No.2016YFA0203102)和中央组织部“青年千人计划”资助.

Advances of Metal-Organic Frameworks in Adsorption and Separation Applications

  • Zhang He ,
  • Li Guoliang ,
  • Zhang Kegang ,
  • Liao Chunyang
Expand
  • a State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085;
    b College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049;
    c Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003

Received date: 2017-04-18

  Online published: 2017-09-04

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21522706, 21677167, 21677159, 21407047), the National Key Research and Development Program of China (No. 2016YFA0203102), and the Thousand Young Talents Program of China.

摘要

作为一种新型的纳米多孔材料,金属有机骨架材料(Metal-Organic Frameworks,MOFs)在近二十余年中得到了飞速的发展.MOFs材料由无机金属离子和有机配体通过自组装形成,具有许多优于传统多孔材料的特性.超高的比表面积、较高的孔隙率、可调的孔道尺寸、良好的热稳定性和化学稳定性使得MOFs材料在多个领域中展现出了广阔的应用前景.随着研究的不断深入,MOFs材料被广泛应用于催化反应、吸附分离、生物医学等领域中,并表现出了优异的效果.本文着力于近年来MOFs材料在吸附分离研究中的进展,重点介绍了这类材料在能源气体贮存、碳捕获、膜分离、液相吸附、色谱的分离净化方面的应用,并对其今后的发展进行了展望.

本文引用格式

张贺 , 李国良 , 张可刚 , 廖春阳 . 金属有机骨架材料在吸附分离研究中的应用进展[J]. 化学学报, 2017 , 75(9) : 841 -859 . DOI: 10.6023/A17040168

Abstract

As a new type of nano porous material, Metal-Organic Frameworks (MOFs) have been rapidly developed for decades. MOFs are synthesized via the self-assembling combination of inorganic metals and organic ligands, and they have many characteristics superior to the conventional porous materials. The ultrahigh surface area, high porosity, adjustable pore sizes, outstanding thermal and chemical stability enable MOFs to be promising materials for widespread applications. With the deepening of research in recent years, MOFs are successfully applied in diverse fields, such as catalysis, adsorption, separation, and biomedicine imaging, among others. The advances of MOFs used in adsorption and separation are reviewed in this paper, with an emphasis on storage of fuels, carbon capture, membrane separation, liquid-phase adsorption, and chromatographic separation and purification. In addition, the future research directions regarding MOFs in the adsorption and separation field are prospected also.

参考文献

[1] Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.
[2] Li, J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112, 869.
[3] Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477.
[4] Li, J.-R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeone, H. K.; Balbuena, P. B.; Zhou, H.-C. Coord. Chem. Rev. 2011, 255, 1791.
[5] Yang, C. X.; Yan, X. P. Chin. J. Anal. Chem. 2013, 41, 1297. (杨成雄, 严秀平, 分析化学, 2013, 41, 1297.)
[6] Yu, Y.; Ren, Y.; Shen, W.; Deng, H.; Gao, Z. Trends Anal. Chem. 2013, 50, 33.
[7] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.
[8] Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.
[9] Cravillon, J.; Munzer, S.; Lohmeier, S. J.; Feldhoff, A.; Huber, K.; Wiebcke, M. Chem. Mater. 2009, 21, 1410.
[10] Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Nat. Mater. 2010, 9, 172.
[11] Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataile, T.; Férey, G. Chem. Eur. J. 2004, 10, 1373.
[12] Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850.
[13] Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A. Science 1999, 283, 1148.
[14] An, J.; Shade, C. M.; Chengelis-Czegan, D. A.; Petoud, S.; Rosi, N. L. J. Am. Chem. Soc. 2011, 133, 1220.
[15] Liu, T.-F.; Feng, D.; Chen, Y.-P.; Zou. L.; Bosch, M.; Yuan, S.; Wei, Z.; Fordham, S.; Wang, K.; Zhou, H.-C. J. Am. Chem. Soc. 2015, 137, 413.
[16] Zhou, W.; Wu, H.; Yildirim, T. J. Am. Chem. Soc. 2008, 130, 15268.
[17] Tranchemontagne, D. J.; Park, K. S.; Furukawa, H.; Eckert, J.; Knobler, C. B.; Yaghi, O. M. J. Phys. Chem. 2012, 116, 13143.
[18] Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.
[19] Haque, E.; Jun, J. W.; Jhung, S. H. J. Hazard. Mater. 2011, 185, 507.
[20] Cychosz, K. A.; Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2008, 130, 6938.
[21] Cui, X. Y.; Gu, Z. Y.; Jiang, D. Q.; Li, Y.; Wang, H. F.; Yan, X. P. Anal. Chem. 2009, 81, 9771.
[22] Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F. Chem. Soc. Rev. 2015, 44, 6804.
[23] Yang, L.; Xu, C.; Ye, W.; Liu W. Sens. Actuat. B-Chem. 2015, 215, 489.
[24] Cui, Y.; Chen, B.; Qian, G. Coord. Chem. Rev. 2014, 273, 76.
[25] Zhou, J. M.; Shi, W.; Li, H. M.; Li, H. J. Phys. Chem. C 2014, 118, 416.
[26] Rocca, J. D.; Liu, D.; Lin, W. Acc. Chem. Res. 2011, 44, 957.
[27] Horcajada, P.; Chalati, T.; Sere, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Nat. Mater. 2010, 9, 172.
[28] Wang, L.; Han, Y.; Feng, X.; Zhou, J.; Qi, P.; Wang, B. Coord. Chem. Rev. 2015, 307, 361.
[29] Silva, P.; Vilela, S. M. F.; Tomé, J. P. C.; Paz, F. A. A. Chem. Soc. Rev. 2015, 44, 6774.
[30] Yilmaz, M.; Trukhan, N.; Müller, U. Chin. J. Catal. 2012, 33, 3.
[31] Rose, M.; Böhringer, B.; Jolly, M.; Fisher, R.; Kaskel, S. Adv. Eng. Mater. 2011, 13, 356.
[32] Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 14176.
[33] Furukawa, H.; Miller, M. A.; Yaghi, O. M. J. Mater. Chem. 2007, 17, 3197.
[34] Llewellyn, P. L.; Bourrelly, S.; Serre, C.; Vimont, A.; Daturi, M.; Hamon, L.; Weireld, G. D.; Chang, J. S.; Hong, D. Y.; Hwang, Y. K.; Jhung, S. H.; Férey, G. Langmuir. 2008, 24, 7245.
[35] Furukawa, H.; Ko, N; Go, Y. B.; Aratani, N.; Choi, S. B. Science 2010, 329, 424.
[36] Hu, C.; Li, H.; Jia, W.; Liu, M.; Hao, Z.; Zhu, Z. Chin. J. Chem. 2015, 33, 247.
[37] Allendorf, M. D.; Stavila, V. CrystEngComm 2015, 17, 229.
[38] Sun, M.; Zhao, T.; Wang, J.; Ma, Z.; Li, F. Chin. J. Chem. 2015, 33, 1057.
[39] Liang, D.; Li, Z.; Li, P.; Chen, Y.; Zhang, S.; Wang, Y. Chin. J. Chem. 2015, 33, 1389.
[40] Wu, X.; Hu, C.; Zhao, G.; Yuan, Y.; Zhu, Z. Chin. J. Chem. 2016, 34, 1291.
[41] Yan, Z.; Yuan, Y.; Liu, J.; Li, Q.; Yuan, N.; Zhang, D.; Tian, Y.; Zhu, G. Acta Chim. Sinica 2016, 74, 67. (闫卓君, 元野, 刘佳, 李勤, 阮南中, 张大明, 田宇阳, 朱广山, 化学学报, 2016, 74, 67.)
[42] Ren, H.; Zhu, G. Acta Chim. Sinica 2015, 73, 587. (任浩, 朱广山, 化学学报, 2015, 73, 587.)
[43] Li, Y.; Wang, H.; Dong, M.; Li, J.; Wang, G.; Qin, Z.; Fan, W.; Wang, J. Acta Chim. Sinica 2016, 74, 529. (李艳春, 王浩, 董梅, 李俊汾, 王国富, 秦张峰, 樊卫斌, 王建国, 化学学报, 2016, 74, 529.)
[44] Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Chem. Soc. Rev. 2009, 38, 1330.
[45] Khan, N. A.; Jhung, S. H. Coord. Chem. Rev. 2015, 285, 11.
[46] Shekhah, O.; Liu, J.; Fischer, R. A.; Wöll, C. Chem. Soc. Rev. 2011, 40, 1081.
[47] Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Adv. Mater. 2011, 23, 249.
[48] Nam, T. H.; Kim, J. G.; Choi, Y. S. Int. J. Hydrogen Energy 2013, 38, 999.
[49] Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H. J.; Junge, H.; Gladiali, S.; Beller, M. Nature 2013, 495, 85.
[50] Lai, Q.; Paskevicius, M.; Sheppard, D. A.; Buckley, C. E.; Thornton, A. W.; Hill, M. R.; Gu, Q.; Mao, J.; Huang, Z.; Liu, H. K.; Guo, Z.; Banerjee, A.; Chakraborty, S.; Ahuja, R.; Aguey-Zinsou, K. ChemSusChem 2015, 8, 2789.
[51] Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127.
[52] Yang, H.; Orefuwa, S.; Goudy, A. Microporous Mesoporous Mater. 2011, 143, 37.
[53] Latroche, M.; Surblé, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.; Lee, J.-H.; Chang, J. S.; Jhung, S. H.; Férey, G. Angew. Chem., Int. Ed. 2006, 45, 8227.
[54] Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. J. Am. Chem. Soc. 2004, 126, 5666.
[55] Frost, H.; Düren, T.; Snurr, R. Q. J. Phys. Chem. B 2006, 110, 6336.
[56] Xu, W.; Tao, Z.-L.; Chen, J. Process. Chem. 2006, 18, 200. (许炜, 陶占良, 陈军, 化学进展, 2006, 18, 200.)
[57] Makal, T. A.; Li, J.-R.; Lu, W.; Zhou, H.-C. Chem. Soc. Rev. 2012, 41, 7761.
[58] Gándara, F.; Furukawa, H.; Lee, S.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 5271.
[59] Gomez-Gualdron, D. A.; Gutov, O. V.; Krungleviciute, V.; Borah, B.; Mondloch, J. E.; Hupp, J. T.; Yildirim, T.; Farha, O. K. Chem. Mater. 2014, 26, 5632.
[60] Peng, Y.; Krungleviciute, V.; Eryazici, I.; Hupp, J. T.; Farha, O. K.; Yildirim, T. J. Am. Chem. Soc. 2013, 135, 11887.
[61] Rao, X.; Cai, J.; Yu, J.; He, Y.; Wu, C.; Zhou, W.; Yildirim, T.; Chen, B.; Qian, G. Chem. Commun. 2013, 49, 6719.
[62] Wu, H.; Simmons, J. M.; Liu, Y.; Brown, C. M.; Wang, X.-S.; Ma, S.; Peterson, V. K.; Southon, P. D.; Cameron, J. K.; Zhou, H.-C.; Yildirim, T.; Zhou, W. Chem. Eur. J. 2010, 16, 5205.
[63] Kale, C.; Górak, A.; Schoenmakers, H. Int. J. Greenh. Gas. Con. 2013, 17, 294.
[64] Zhang, Z.; Yao, Z.-Z.; Xiang, S.; Chen, B. Energy Environ. Sci. 2014, 7, 2868.
[65] Bourrelly, S.; Llewellyn, P. L.; Serre, C.; Millange, F.; Loiseau, T.; Férey, G. J. Am. Chem. Soc. 2005, 127, 13519.
[66] Phan, A.; Doonan, C. J.; Yaghi, O. M. Acc. Chem. Res. 2010, 43, 58.
[67] Hamon, L.; Jolimaitre, E.; Pirngruber, G. D. Ind. Eng. Chem. Res. 2010, 49, 7497.
[68] Couck, S.; Denayer, J. F. M.; Baron, G. V. J. Am. Chem. Soc. 2009, 131, 6326.
[69] Chaemchuem, S.; Kui, Z.; Verpoort, F. CrystEngComm 2016, 18, 7614.
[70] Jeazet, H. B. T.; Sorribas, S.; Román-Marín, J. M.; Zornoza, B.; Téllez, C.; Janiak, C. Eur. J. Inorg. Chem. 2016, 27, 4363.
[71] Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Xamena, F. X. L. I.; Gascon, J. Nat. Mater. 2015, 14, 48.
[72] Jihyun, A.; Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 38.
[73] Zheng, B.; Bai, J.; Duan, J.; Wojtas, L.; Zaworotko, M. J. J. Am. Chem. Soc. 2011, 133, 748.
[74] Liu, B.; Wu, W. P.; Hou, L.; Wang, Y. Y. Chem. Commun. 2014, 50, 8731.
[75] Jeazet, H. B. T.; Staudt, C.; Janiak, C. Dalton Trans. 2012, 41, 14003.
[76] Qiu, S.; Xue, M.; Zhu, G. Chem. Soc. Rev. 2014, 43, 6116.
[77] Ben, T.; Lu, C.; Pei, C.; Xu, S.; Qiu, S. Chem. Eur. J. 2012, 18, 10250.
[78] Li, Y.; Liang, F.; Bux, H.; Yang, W.; Caro, J. J. Membr. Sci. 2010, 354, 48.
[79] Li, T.; Pan, Y.; Peinemann, K.-V.; Lai, Z. J. Membr. Sci. 2013, 425, 235.
[80] Wang, Z.; Wang, D.; Zhang, S.; Hu, L.; Jin, J. Adv. Mater. 2016, 28, 3399.
[81] Shekhah, O.; Swaidan, R.; Belmabkhout, Y.; Plessis, M. D.; Jacobs, T.; Barbour, L. J.; Pinnau, I.; Eddaoudi, M. Chem. Commun. 2014, 50, 2089.
[82] Liu, D.; Ma, X.; Xi, H.; Lin, Y. S. J. Adv. Mater. 2014, 451, 85.
[83] Zhang, X.; Liu, Y.; Kong, L.; Liu, H.; Qiu, J.; Han, W.; Weng, L.-T.; Yeung, K. L.; Zhu, W. J. Mater. Chem. A 2013, 1, 10635.
[84] Hu, Y.; Wei, J.; Liang, Y.; Zhang, H.; Zhang, X.; Shen, W.; Wang, H. Angew. Chem. Int. Ed. 2016, 55, 2048.
[85] Yoo, Y.; Lai, Z.; Jeong, H.-K. Microporous Mesoporous Mater. 2009, 123, 100.
[86] Huang, A.; Bux, H.; Steinbach, F.; Caro, J. Angew. Chem., Int. Ed Engl. 2010, 49, 4958.
[87] Huang, A.; Chen, Y.; Wang, N.; Hu, Z.; Jiang, J.; Caro, J. Chem. Commun. 2012, 48, 10981.
[88] Friebe, S.; Geppert, B.; Steinbach, F.; Caro, J. Appl. Mater. Interfaces 2017, 9, 12878.
[89] Ben, T.; Lu, C.; Pei, C.; Xu, S.; Qiu, S. Chem. Eur. J. 2012, 18, 10250.
[90] Nan, J.; Dong, X.; Wang, W.; Jin, W.; Xu, N. Langmuir. 2011, 27, 4309.
[91] Lee, D.-J.; Li, Q.; Kim, H.; Lee, K. Microporous Mesoporous Mater. 2012, 163, 169.
[92] Zhang, F.; Zou, X. Q.; Gao, X.; Fan, S. J; Sun, F. X.; Ren, H.; Zhu, G. S. Adv. Funct. Mater. 2012, 22, 3585.
[93] Arjmandi, M.; Pakizeh, M. J. Ind. Eng. Chem. 2014, 20, 3857.
[94] Liu, Y.; Zeng, G.; Pan, Y.; Lai, Z. J. Membr. Sci. 2011, 379, 46.
[95] Tien-Binh, N.; Vinh-Thang, H.; Chen, X. Y. J. Membr. Sci. 2016, 520, 941.
[96] Haque, E.; Lee, J. E.; Jang, I. E.; Hwang, Y. K.; Chang, J.; Jegai, J.; Jhung, S. H. J. Hazard. Mater. 2010, 181, 535.
[97] Jhung, S. H.; Lee, J. H.; Férey, G.; Chang, J.-S. Adv. Mater. 2007, 19, 121.
[98] Dinesh, V. P.; Somayajulu, R. P. B.; Dangi, G. P. Ind. Eng. Chem. Res. 2011, 50, 10516.
[99] Ke, F.; Qiu, L. G.; Yuan, Y. P.; Peng, F. M.; Jiang, X.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. J. Hazard. Mater. 2011, 196, 36.
[100] Maleki, A.; Hayati, B.; Naghizadeh, M.; Joo, S. W. J. Ind. Eng. Chem. 2015, 28, 211.
[101] Hasan, Z.; Jeon, J.; Jhung, S. H. J. Hazard. Mater. 2012, 209, 151.
[102] Seo, Y. S.; Khan, N. A.; Jhung, S. H. Chem. Eng. J. 2015, 270, 22.
[103] Li, S.; Chen, Y.; Pei, X.; Zhang, S.; Feng, X.; Zhou, J.; Wang, B. Chin. J. Chem. 2016, 34, 175.
[104] Shi, F.; Hammoud, M.; Thompson, L. T. Appl. Catal. B 2011, 103, 261.
[105] Park, T. H.; Cychosz, K. A.; Wong-Foy, A. G. Chem. Commun. 2011, 47, 1452.
[106] Ahmed, I.; Hasan, Z.; Khan, N. A.; Jhung, S. H. Appl. Catal. B 2013, 129, 123.
[107] Chang, N.; Gu, Z. Y.; Wang, H. F.; Yan, X. P. Anal. Chem. 2011, 83, 7094.
[108] Ge, D.; Lee, H. K. J. Chromatogr. A 2011, 1218, 8490.
[109] Shang, H. B.; Yang, C. X.; Yan, X. P. J. Chromatogr. A 2014, 1357, 165.
[110] Yu, L. Q.; Yan, X. P. Chem. Commun. 2013, 49, 2142.
[111] Chen, B. L.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. Angew. Chem., Int. Ed. 2006, 45, 1390.
[112] Chang, N.; Gu, Z. Y.; Yan, X. P. J. Am. Chem. Soc. 2010, 132, 13645.
[113] Fan, L.; Yan, X. P. Talanta 2012, 99, 944.
[114] Gu, Z. Y.; Yan, X. P. Angew. Chem., Int. Ed. 2010, 49, 1477.
[115] Gu, Z.-Y.; Jiang, J.-Q.; Yan, X.-P. Anal. Chem. 2011, 83, 5093.
[116] Yang, C.-X.; Yan, X.-P. Anal. Chem. 2011, 83, 7144.
[117] Yan, Z.; Zhang, W.; Gao, J.; Lin, Y.; Li, J.; Lin, Z.; Zhang, L. RSC Adv. 2015, 5, 40094.
[118] Yang, C.-X.; Liu, S.-S.; Wang, H.-F.; Wang, S.-W.; Yan, X.-P. Analyst 2012, 137, 133.
[119] Liu, S.-S.; Yang, C.-X.; Wang, S.-W.; Yan, X.-P. Analyst 2012, 137, 816.
[120] Fu, Y. Y.; Yang, C. X.; Yan, X. P. Langmuir 2012, 28, 6794.
[121] Zhao, W. W.; Zhang, C. Y.; Yan, Z. G.; Bai, L. P.; Wang, X.; Zhou, Y. Y.; Xie, Y.; Li, F. S.; Li, J. R. J. Chromatogr. A 2014, 1370, 121.
[122] Yang, C. X.; Chen, Y. J.; Wang, H. F.; Yan, X. P. Chem. Eur. J. 2011, 17, 11734.
[123] Li, Y. X.; Zhang, W.; Li, Z.; Xie, Z. G. Acta Chim. Sinica 2015, 73, 641. (李阳雪, 张巍, 刘智, 谢志刚, 化学学报, 2015, 73, 641.)
[124] Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Acc. Chem. Res. 2016, 49, 483.

文章导航

/