研究展望

基于热电材料的新型传感器研究进展

  • 柳冈 ,
  • 王铁
展开
  • a 北京科技大学材料科学与工程学院 北京 100083;
    b 中国科学院化学研究所活体分析化学重点实验室 北京 100190
柳冈,北京科技大学2012级在读博士生.研究方向为热电复合材料的制备与表征;王铁,中国科学院化学研究所研究员,博士生导师.主要从事功能纳米材料自组装行为的基础研究以及应用,有机、无机纳米杂化材料的研制与开发,以及探索基于纳米材料界面与表面的光谱行为以及在生物活体中的应用.

收稿日期: 2017-06-09

  网络出版日期: 2017-09-04

基金资助

项目受青年千人计划、国家自然科学基金(Nos.21422507,21635002,21321003)和中国科学院资助.

Research Progress in Thermoelectric Materials for Sensor Application

  • Liu Gang ,
  • Wang Tie
Expand
  • a School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083;
    b Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190

Received date: 2017-06-09

  Online published: 2017-09-04

Supported by

Project supported by the 1000 Young Talents Program, the National Natural Science Foundation of China (Nos. 21422507, 21635002, 21321003) and the Chinese Academy of Sciences.

摘要

传感器作为现代智能工业的核心部件之一,凭借其优良的性能,越来越受到关注.本文总结了热电材料在传感器应用方面的研究成果,特别是硅基、碳基、铅基、碲基、贵金属类、有机类以及催化类的热电材料对传感器高灵敏度、高响应值、高稳定性等方面的影响.已有研究表明,通过在微米纳米尺度合成及加工所形成的低维微纳结构的热电材料,能够获得高ZT值和更高的热电性能.这一特性与传感器微型化方向发展一致.低维微纳结构的热电材料未来必将能够拓展传感器的特性和适用领域,促进传感器朝着高精尖模式的发展.

本文引用格式

柳冈 , 王铁 . 基于热电材料的新型传感器研究进展[J]. 化学学报, 2017 , 75(11) : 1029 -1035 . DOI: 10.6023/A17060259

Abstract

Sensors are core components for modern intelligent industry. Thermoelectric materials, which have significant influence on the design and functions for a variety types of sensors, attracted more and more attentions recently. In this paper, different categories of thermoelectric materials, such as silicon, carbon, lead, tellurium, precious metal, organic and catalysis based thermoelectric materials, are discussed in detail on their high sensitivity, fast response, and stability as potential candidates for specific sensors. The silicon-based thermoelectric materials are of particular efficiency in sensor data process and transmission due to their high purity. Carbon-based thermoelectric materials, including graphene and carbon nanotubes, advantage in their excellent conductivity, flexible structure, and manufactural controllability. Lead-based thermoelectric materials are mainly used as infrared sensors because of their natural sensitivity to infrared specially. Telluride-based thermoelectric materials, especially Bismuth Telluride and Antimony Telluride, can form PN junction and be applied as soft sensors. Products based on these materials have already been developed for detecting pulses. The precious metals-based thermoelectric materials, e.g. gold or silver, are commonly used as dopant in the organic thermoelectric materials to adjust their sensitivity. Organic thermoelectric materials benefit from their good stability and variability, while copper-bismuth alloy based thermoelectric materials are widely investigated to make gas sensors. In general, the inorganic thermoelectric materials normally feature high electrical conductivity, which enhances the sensitivity of sensors, whereas the organic thermoelectric materials have high stability to maintain the stability of sensors. At present, the miniaturization of sensors is the mainstream for both material study and device fabrication. Low dimensional thermoelectric materials, especially nano-scaled materials such as quantum dots, nanowires, etc., will for sure promote the progressing of sensor development. For example, carbon nanotube can be knit into specific sheets as we designed with tunable conductivity, which makes them of remarkable industrial potentials as soft sensors. Designing and fabricating multi-functional and space-saving thermoelectric materials with well aligned and effectively assembled nanomaterials would be a feasible and practicable approach for future sensors.

参考文献

[1] Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Nara-simhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R. Nature Nanotech. 2009, 4, 235.
[2] Li, J. F.; Liu, W.; Zhao, L. D.; Zhou, M. NPG Asia Mater. 2010, 2, 152.
[3] Rama, V.; Siivola, E.; Thomas, C.; O'Quinn, B. Nature 2001, 413, 597.
[4] Delaire, O.; Ma, J.; Marty, K.; May, A. F.; McGuire, M. A.; Du, M. H.; Singh, D. J.; Podlesnyak, A.; Ehlers, G.; Lumsden, M. D.; Sales, B. C. Nature Mater. 2011, 10, 614.
[5] Coucheron, D. A.; Fokine, M.; Patil, N.; Breiby, D. W.; Buset, O. T.; Healy, N.; Peacock, A. C.; Hawkins, T.; Jones, M.; Ballato, J.; Gibson, U. J. Nat. Commun. 2016, 7, 13265.
[6] (a) Xie, P.; Xiong, Q.; Fang, Y.; Qing, Q.; Lieber, C. M. Nature Nanotech. 2011, 7, 119;
(b) Boukai, A. I.; Bunimovich, Y.; Ta-hir-Kheli, J.; Yu, J. K.; Goddard, W. A., 3rd; Heath, J. R. Nature 2008, 451, 168;
(c) Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Nature 2008, 451, 163.
[7] Mao, J.; Liu, Z.; Ren, Z. npj Quantum Materials 2016, 1, 16028.
[8] McGrail, B. T.; Sehirlioglu, A.; Pentzer, E. Angew. Chem. 2015, 54, 1710.
[9] Kroon, R.; Mengistie, D. A.; Kiefer, D.; Hynynen, J.; Ryan, J. D.; Yu, L.; Muller, C. Chem. Soc. Rev. 2016, 45, 6147.
[10] Wang, Z.; Leonov, V.; Fiorini, P.; Van Hoof, C. Sens. Actuators, A:Physical 2009, 156, 95.
[11] Liu, X.; Wang, Y.; Huang, Y.; Feng, X.; Fan, Q.; Huang, W. Acta Chim. Sinica 2016, 74, 664. (刘兴奋, 王亚鹏, 黄艳琴, 冯晓苗, 范曲立, 黄维, 化学学报, 2016, 74, 664.)
[12] He, W.; Zhang, G.; Zhang, X.; Ji, J.; Li, G.; Zhao, X. Appl. Energy 2015, 143, 1.
[13] Marichy, C.; Bechelany, M.; Pinna, N. Adv. Mater. 2012, 24, 1017.
[14] Pu, X.; Liu, M.; Chen, X.; Sun, J.; Du, C.; Zhang, Y.; Zhai, J.; Hu, W.; Wang, Z. L. Science Advances 2017, 3, e1700015.
[15] Zhang, C.; Meng, Y.; Kuang, J.; Xu, L. Acta Chim. Sinica 2015, 73, 409. (张崇洋, 孟玉珠, 匡金志, 徐岚, 化学学报, 2015, 73, 409.)
[16] Qian, X.; Su, M.; Li, F.; Song, Y. Acta Chim. Sinica 2016, 74, 565. (钱鑫, 苏萌, 李风煜, 宋延林, 化学学报, 2016, 74, 565.)
[17] Zhu, W.; Deng, Y.; Cao, L. Nano Energy 2017, 34, 463.
[18] Zhang, F.; Zang, Y.; Huang, D.; Di, C. A.; Zhu, D. Nat. Commun. 2015, 6, 8356.
[19] Wang, H.; He, Y. Sensors 2017, 17, 268.
[20] Rao, S.; Pangallo, G.; Della Corte, F. G. Sensors 2016, 16, 67.
[21] Li, W.; Feng, Z.; Dai, E.; Xu, J.; Bai, G. Sensors 2016, 16, 1880.
[22] Zhan, B.; Li, C.; Yang, J.; Jenkins, G.; Huang, W.; Dong, X. Small 2014, 10, 4042.
[23] Singh, S.; Lee, S.; Kang, H.; Lee, J.; Baik, S. Energy Storage Materials 2016, 3, 55.
[24] Quan, Z.; Luo, Z.; Wang, Y.; Xu, H.; Wang, C.; Wang, Z.; Fang, J. Nano Lett. 2013, 13, 3729.
[25] Hong, M.; Chen, Z. G.; Yang, L.; Zou, J. Nanoscale 2016, 8, 8681.
[26] Snyder, G. J.; Lim, J. R.; Huang, C. K.; Fleurial, J. P. Nature Mater. 2003, 2, 528.
[27] Galli, G.; Donadio, D. Nature Nanotech. 2010, 5, 701.
[28] Zhou, H.; Kropelnicki, P.; Lee, C. Nanoscale 2015, 7, 532.
[29] Jung, S. W.; Shin, J. Y.; Pi, K.; Goo, Y. S.; Cho, D. D. Sensors 2016, 16, 2035.
[30] Weiss, N. O.; Zhou, H.; Liao, L.; Liu, Y.; Jiang, S.; Huang, Y.; Duan, X. Adv. Mater. 2012, 24, 5782.
[31] Liu, Q.; Chen, J.; Li, Y.; Shi, G. ACS Nano 2016, 10, 7901.
[32] Wu, G.; Zhang, Z. G.; Li, Y.; Gao, C.; Wang, X.; Chen, G. ACS Nano 2017, 11, 5746.
[33] Chen, J.; Wang, L.; Gui, X.; Lin, Z.; Ke, X.; Hao, F.; Li, Y.; Jiang, Y.; Wu, Y.; Shi, X.; Chen, L. Carbon 2017, 114, 1.
[34] Ong, W.-L.; Rupich, S. M.; Talapin, D. V.; McGaughey, A. J. H.; Malen, J. A. Nature Mater. 2013, 12, 410.
[35] Lu, Z.; Zhang, H.; Mao, C.; Li, C. M. Appl. Energy 2016, 164, 57.
[36] Wu, H.; Huang, Y.; Xu, F.; Duan, Y.; Yin, Z. Adv. Mater. 2016, 28, 9881.
[37] Cao, Z.; Koukharenko, E.; Tudor, M. J.; Torah, R. N.; Beeby, S. P. Sens. Actuators A:Physical 2016, 238, 196.
[38] Yadav, A.; Pipe, K. P.; Shtein, M. J. Power Sources 2008, 175, 909.
[39] Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A. Nature Rev. Mater. 2016, 1, 16050.
[40] Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Nature Mater. 2011, 10, 429.
[41] Zhang, Q.; Sun, Y.; Xu, W.; Zhu, D. Adv. Mater. 2014, 26, 6829.
[42] Ju, H.; Kim, J. Chem. Eng. J. 2016, 297, 66.
[43] Song, H.; Cai, K. Energy 2017, 125, 519.
[44] Kim, G. H.; Shao, L.; Zhang, K.; Pipe, K. P. Nature Mater. 2013, 12, 719-23.
[45] Park, S. C.; Yoon, S. I.; Lee, C. I.; Kim, Y. J.; Song, S. Analyst 2009, 134, 236.

文章导航

/